Author: Liu, B.
Paper Title Page
MO3A9
Comissioning Progress and Advanced FEL Experiments at the SXFEL Facility  
 
  • C. Feng, B. Liu, Z. Wang, Z.T. Zhao
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  The Shanghai soft X-ray Free-Electron Laser facility (SXFEL) is the first X-ray FEL facility in China. The construction of the SXFEL facility was finished in 2022. The output photon energy of the SXFEL can cover the whole water window range. Except for the self-amplified spontaneous emission, various seeding technques have also been adopted for improving the performances of the SXFEL. Here we presents an overview of the SXFEL facility, including the layout and design, construction status, commissioning progress and future plans on advanced FEL experiments.  
slides icon Slides MO3A9 [4.688 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU4P07 Design of the Beam Distribution System of SHINE 87
 
  • S. Chen
    SSRF, Shanghai, People’s Republic of China
  • H.X. Deng, X. Fu, B. Liu
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • B.Y. Yan
    SINAP, Shanghai, People’s Republic of China
 
  The Shanghai high-repetition-rate XFEL and extreme light facility (SHINE), as the first hard X-ray free electron laser facility in China, is now under construction. CW electron beam with up to 1 MHz bunch repetition rate from a superconducting RF linac is used to feed at least three individual undulator lines that covers a wide photon energy range (0.4 keV ~ 25 keV). In order to maximize the efficiency of the facility, a beam switchyard between the linac and undulator lines is used to enable the simultaneously operation of the three undulator lines. In this work, the schematic design of the beam switchyard for bunch-by-bunch beam separation of CW beam is described, and the current lattice design of the linac-to-undulator deflection branches and the start-to-end tracking simulation results are presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU4P07  
About • Received ※ 22 August 2023 — Revised ※ 28 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU4P08 Design and Commissioning of the Beam Switchyard for the SXFEL-UF 91
 
  • S. Chen, K.Q. Zhang
    SSRF, Shanghai, People’s Republic of China
  • H.X. Deng, C. Feng, B. Liu, T. Liu, Z. Qi, Z.T. Zhao
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  As an important measure of improving the efficiency and usability of X-ray free electron laser facilities, parallel operation of multiple undulator lines realized by a beam switchyard has become a standard configuration in the recent built XFEL facilities. SXFEL-UF, the first soft X-ray free electron laser user facility in China, has finished construction and commissioning recently. The electron beams from the linac are separated and delivered alternately to the two parallel undulator beam lines through a beam switchyard. A stable and fast kicker magnet is used to achieve bunch-by-bunch separation. Optics measures are applied to mitigate the impact of various collective effects, such as coherent synchrotron radiation and micro-bunching instability, on the beam quality after passing through the deflection line of the beam switchyard. In this study, the comprehensive physical design of the beam switchyard is described and the latest results of its commissioning process are presented.  
poster icon Poster TU4P08 [4.643 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU4P08  
About • Received ※ 23 August 2023 — Revised ※ 30 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE4P14 Layout of the Undulator-to-dump line at the SHINE 177
 
  • T. Liu, S. Chen, H.X. Deng, B. Liu, Z. Qi
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • Z.F. Gao
    SSRF, Shanghai, People’s Republic of China
  • N. Huang
    Zhangjiang Lab, Shanghai, People’s Republic of China
 
  The Shanghai HIgh repetitioN rate XFEL and Extreme light Facility as the first hard X-ray free-electron laser (FEL) facility in China, is currently under construction in the Zhangjiang area, Shanghai. It aims to deliver X-ray covering photon energy range from 0.4 to 25 keV, with electron beam power up to 800 kW. Downstream of the undulator line, the beam transport design of the undulator-to-dump line is critical which is mainly used for realization of FEL diagnostics based on transverse deflecting structure and beam absorption in the dump. In this manuscript we describe the current layout of this system.  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-WE4P14  
About • Received ※ 20 August 2023 — Revised ※ 22 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)