Author: Guetg, M.W.
Paper Title Page
TU2A3
Opportunities and Challenges of the Hard X-ray Self-seeding System at the European XFEL  
 
  • S. Liu, P. Dijkstal, C. Grech, M.W. Guetg, V. Kocharyan, T. Long, N.S. Mirian, W. Qin
    DESY, Hamburg, Germany
  • G. Geloni, N.G. Kujala, C. Lechner, S. Serkez, J.W. Yan
    EuXFEL, Schenefeld, Germany
 
  The Hard X-ray Self-seeding system (HXRSS) at the European XFEL provides users with longitudinally coherent X-ray FEL pulses with narrow bandwidth and high spectral density. With this setup we have achieved a maximum spectral density of about 1 mJ/eV at 9 keV. Combined with the MHz repetition rate, it opens up exciting new opportunities in a wide range of scientific fields. However, the increasing user demand and expectations also poses challenges in machine tuning and operation parameter ranges. We will summarize the HXRSS performance we have achieved and the user delivery experiences in the last two years.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH2A1
Dechirper System for Fresh-slice Applications at the European XFEL  
 
  • W. Qin, W. Decking, M.W. Guetg, J.J. Guo, S. Liu, T. Wohlenberg, I. Zagorodnov
    DESY, Hamburg, Germany
  • E. Gjonaj
    TEMF, TU Darmstadt, Darmstadt, Germany
  • J.J. Guo
    SINAP, Shanghai, People’s Republic of China
  • J.J. Guo
    University of Chinese Academy of Sciences, Beijing, People’s Republic of China
 
  Fresh-slice lasing using dechirper induced time-dependent orbit oscillation is capable of producing high intensity two-color XFEL pulses and high power short pulses at femtosecond level. At the European XFEL, a dechirper system for fresh-slice applications for both the hard x-ray beamline SASE1 and the soft x-ray SASE3 beamline is being developed. In this contribution, we present the novel design of the wakefield structure and initial commissioning efforts.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH2A2
Generation of Intense Attosecond Pulses at the European XFEL  
 
  • J.W. Yan, G. Geloni, C. Lechner, S. Serkez
    EuXFEL, Schenefeld, Germany
  • Y. Chen, P. Dijkstal, M.W. Guetg, E. Schneidmiller
    DESY, Hamburg, Germany
 
  X-ray free-electron lasers (XFELs) have paved the way for significant advancements in attosecond science by generating intense, ultrashort pulses. We are currently developing AttoSecond Pulses with eSASE and Chirp-Taper schemes (ASPECT) project at the European XFEL, designed to exploit these capabilities. In its initial stages, ASPECT will be used to produce attosecond-long pulses at two out of the three SASE lines at the European XFEL: SASE1 and SASE3, dedicated to producing hard and soft x-rays respectively. In this presentation, we will report design studies and preliminary experimental results at the European XFEL.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1M1
Summary Report of Working Group A: Linac-based Light Sources  
 
  • E. Prat
    PSI, Villigen PSI, Switzerland
  • M.W. Guetg
    DESY, Hamburg, Germany
  • E. Hemsing
    SLAC, Menlo Park, California, USA
  • T. Inagaki
    RIKEN SPring-8 Center, Hyogo, Japan
 
  The paper highlights the key points arising from six insightful and instructive working group sessions.  
slides icon Slides FR1M1 [8.156 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)