Paper | Title | Page |
---|---|---|
TU4P13 | An Introduction to the UK XFEL Conceptual Design and Options Analysis | 103 |
|
||
In October 2022, the UK XFEL project entered a new phase to explore how best to deliver the advanced XFEL capabilities identified in the project’s Science Case. This phase includes developing a conceptual design for a unique new machine to fulfil the required capabilities and more. It also examines the possibility of investment opportunities at existing XFELs to deliver the same aims, and a comparison of the various options will be made. The desired next-generation capabilities include transform-limited operation across the entire X-ray range with pulse durations ranging from 100 as to 100 fs; evenly spaced high rep. rate pulses for enhanced data acquisition rates; optimised multi-colour FEL pulse delivery and a full array of synchronised sources (XUV-THz sources, electron beams and high power/high energy lasers). The project also incorporates sustainability as a key criteria. This contribution gives an overview of progress to date and future plans. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU4P13 | |
About • | Received ※ 23 August 2023 — Revised ※ 25 August 2023 — Accepted ※ 30 August 2023 — Issued ※ 02 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WE2A4 |
Scaling of Beam Collective Effects with Bunch Charge in the CompactLight Free-electron Laser | |
|
||
The CompactLight European consortium is designing a state-of-the-art X-ray free-electron laser driven by radiofrequency X-band technology. Rooted in experimental data on photo-injector performance in the recent literature, this study estimates analytically and numerically the performance of the CompactLight delivery system for bunch charges in the range 75-300 pC. Space-charge forces in the injector, linac transverse wakefield, and coherent synchrotron radiation in bunch compressors are all taken into account. The study confirms efficient lasing in the soft X-rays regime with pulse energies up to hundreds of microjoules at repetition rates as high as 1 kHz. | ||
![]() |
Slides WE2A4 [1.777 MB] | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FR2M1 |
Summary Report of Working Group D: Key Technologies | |
|
||
The paper highlights the key points arising from five insightful and instructive working group sessions. | ||
![]() |
Slides FR2M1 [10.806 MB] | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |