Paper | Title | Page |
---|---|---|
MO2L2 | Storage Ring Based Steady State Microbunching | 1 |
|
||
Powerful light sources are highly desired tools for scientific research and for industrial applications. Electrons are the objects that most readily and easily radiate photons. A natural conclusion follows that one should pursue electron accelerators as the choice tools towards powerful light sources. How to manipulate the electron beam in the accelerator so that it radiates light most efficiently, however, remains to be studied and its physical principle and technical limits be explored and optimized for the purpose. One such proposed concepts is based on the steady state microbunching (SSMB) mechanism in an electron storage ring. We make a brief introduction of the SSMB mechanism and its recent status in this presentation. | ||
![]() |
Slides MO2L2 [1.156 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-FLS2023-MO2L2 | |
About • | Received ※ 25 August 2023 — Revised ※ 28 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TU1B2 |
Low-alpha Storage Ring Design for Steady-State Microbunching to Generate EUV Radiation | |
|
||
A new concept is proposed for minimizing the longitudinal emittance of a low momentum compaction factor (low-alpha) storage ring which has the capability to stably store sub-femtosecond electron bunches for the first time. This storage ring is designed for Steady-State microbunching (SSMB) to generate kW level average power EUV radiation. The proposed design approach can be applied to any quasi-isochronous storage rings to yield very high radiation power due to longitudinal coherence of the radiation. We obtain an optimal lattice design by minimizing global and local momentum compaction factors simultaneously and the result of single-particle tracking shows that the electron beam with equilibrium rms bunch length of about 40 nm can be stored in this ring. We also clarify in this type ring, the horizontal emittance will be fixed when beam energy, dipole bending angle and cell tune is fixed. In this type ring, the calculation for IBS effect will be different with traditional rings, we point out where the difference is and give a more convenient calculation for it. | ||
![]() |
Slides TU1B2 [1.628 MB] | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TU4P28 | Useful Formulas and Example Parameters Set for the Design of SSMB Storage Rings | 135 |
|
||
A promising accelerator light source mechanism called steady-state microbunching (SSMB) has been actively studied in recent years. Here we summarize some important formulas for the design of SSMB storage rings. Generally we group our formulas into two categories, i.e., a longitudinal weak focusing storage ring for a desired radiation wavelength larger than 100 nm, and a transverse-longitudinal coupling, or a generalized longitudinal strong focusing, storage ring for a desired radiation wavelength between 1 nm and 100 nm. In each category, we have presented an example parameters set for the corresponding SSMB storage ring, to generate kW-level infrared, EUV and soft X-ray radiation, respectively. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU4P28 | |
About • | Received ※ 15 August 2023 — Revised ※ 24 August 2023 — Accepted ※ 30 August 2023 — Issued ※ 02 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TU4P29 | Why is the Coherent Radiation from Laser-induced Microbunches Narrowbanded and Collimated | 139 |
|
||
There are two reasons: one is the long coherence length of radiation from micobunches imprinted by the modulation laser, the second is the finite transverse electron beam size. In other words, one is due to the longitudinal form factor, and the other the transverse form factor of the electron beam. Here we study the role of these form factors in shaping the energy spectrum and spatial distribution of microbunching radiation. The investigations are of value for cases like steady-state microbunching (SSMB), coherent harmonic generation (CHG) and free-electron laser (FEL). | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU4P29 | |
About • | Received ※ 14 August 2023 — Revised ※ 24 August 2023 — Accepted ※ 30 August 2023 — Issued ※ 02 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |