

QUAPEVAs

QUAdrupole PErmanent magnet based with VAriable gradient

A. Ghaith, C. Kitégi, F. Marteau, M. Valléau, T. Andre, A. Loulergue, , M. E. Couprie, Synchrotron SOLEIL

In collaboration with SIGMAPHI

Motivation

Laser Plasma Acceleration:

- GeV beam within a cm scale accelerating distance
- Up to 10 kA peak current
- Few fs bunch length

But high divergence (few mrads)!

Linear Collider application:

(Fixed gradient)

Bore diameter: 14 mm Gradient: 285 T/m Magnetic Length: 100 mm Integrated Gradient: 28.5 T

T. Mihara, Y. Iwashita et al, Super strong permanent magnet quadrupole for a linear Collider. *IEEE* Journal of applied superconductivity

LPA based FEL application: (Fixed gradient)

Bore diameter: 6 mm Gradient: 503 T/m Magnetic Length: 17 mm Integrated Gradient: 8.5 T

T. Eichner et al, Miniature magnetic devices for laser-based, table-top freeelectron lasers. *PRST Accelerators and beams 10, 082401 (2007)*

T. Mihara et al, Variable permanent magnet quadrupole. *SLAC – PUB – 10248, February 2004*

T. Mihara, Y. Iwashita et al, Super strong adjustable permanent magnet quadrupole for the final focus in the linear Collider. *Proceeding of EPAC 2006, Edinburgh, Scotland*

CLIC: 3 TeV electron-positron collider application:

B.J.A. Shepherd et al, Construction and measurement of novel adjustable permanent magnet quadrupoles for CLIC, *Proceeding of IPAC 2012, New Orleans, USA*

Gradient = 560 T/m Lim, J. K., et al. "Adjustabl**Borerdiameters [mmr]**nanent-magnet quadrupole based electron beam final focus system." *Physical Review Special Topics-Accelerators and Beams* 8.7 (2005): 072401.

- **Gradient = 575 T/m** M. Modena et al., Design, assembly and first measurements of a short model for CLIC final focus hybrid quadrupole QD0," in *Conf. Proc.*, vol. 1205201, p. THPPD010, 2012.
- Gradient = 82 T/m Ngotta, G. Le Bec, and J. Chavanne, \Hybrid high gradient permanent magnet quadrupole," *Physical Review Accelerators and Beams*, vol. 19, no. 12, p. 122401, 2016.

COXINEL Project

- 1) M. E. Couprie et al. J. Physics B : At., Mol. Opt. Phys. (2014) 234001
- 2) A. Loulergue et al., New J. Phys. 17 (2015) 023028 (2015)
- 3) M. E. Couprie et al., Plasma Physics and Controlled Fusion, Volume 58, Number 3 (2016)

7 systems with different magnetic lengths:

- First triplet to focus a 176 MeV beam
- Second triplet to focus a 400 MeV beam
- A prototype

Concept

Maximum Gradient

Concept was patented (QUAPEVA program-Triangle de la Physique, SOLEIL/Sigmaphi collaboration)

C. Benabderrahmane, M. E. Couprie, SOLEIL, F. Forest,
O. Cosson Sigmaphi, "Multi-pôle magnétique réglable",
patent application WO2016034490 (10 March 2016).
C. Benabderrahmane, M. E. Couprie, SOLEIL, F. Forest,
O. Cosson Sigmaphi, "Adjustable magnetic multipole,"
Europe patent application WOBL14SSOQUA/CA (27 August 2015)

Halbach hybrid ring producing a fixed gradient

Cylindrical magnets that can rotate around their axis providing gradient tunability

F. Marteau, A. Ghaith, P. N'Gotta, C. Benabderrahmane, M. Valléau, C. Kitegi, C., ... & Le Bec, G. (2017). Variable high gradient permanent magnet quadrupole (QUAPEVA). *Applied Physics Letters*, *111*(25), 253503.

Specifications (COXINEL)

Parameters	Value	Unit
Length	26-100	mm
Section	$90 \ge 90$	mm^2
Gradient	≥ 100	T/m
Gradient Tunability	$\geqslant 30$	%

- Resistance against demagnetization
- Adapted to in-vacuum environment

Multipole contents:

$$B(z) = \sum_{n=1}^{\infty} (B_n + iA_n) \frac{z^{n-1}}{r_0^{n-1}}$$

n: Multipole order B_n : Normal multipole term A_n : Skew multipole term r_0 : Good field region **Z**: X+iY $b_n = \int B_n$

$$=\int B_n.\,dl$$

Ideal Quadrupole (n=2):

• All terms are zero except:

b2 bn(2m+1): b10

 $\begin{array}{ccc} b_6/b_2 & \leqslant 3 & \% \\ b_{10}/b_2 & \leqslant 1.5 & \% \end{array}$

...

Modeling

A magnetostatic code based on boundary integral method

O. Chubar, P. Elleaume, J. Chavanne, A three-dimensional magnetostatics computer code for insertion devices, Journal of Synchrotron Radiation 5 (3) (1998) 481–484.

A finite element magnetostatic code

J. Simkin, C. Trowbridge, Three-dimensional nonlinear electromagnetic field computations, using scalar potentials, in: IEE Proceedings BElectric Power Applications, Vol. 127, IET, 1980, pp. 368–374

Modeling

Magnet and pole characteristics:

Parameters	Value	Unit
Gradient (G)	110 - 210	T/m
Remanent Field (B_r)	1.26	Т
Coercivity (H_{cj})	1830	kA/m
Pole Saturation	2.35	Т
Radius for Good Field Region (GFR)	4	$\mathbf{m}\mathbf{m}$
$\Delta G/G$	< 0.01	at 4 mm $$

Maximum gradient and Tunability:

Magnetic length	G_{max} [T/m]	$\Delta G [\mathbf{T/m}]$
100 mm	201	92
81.1 mm	195	89
$61 \mathrm{mm}$	190	88
47.1 mm	184	86
$44.7 \mathrm{~mm}$	183	86
40.7 mm	180	85
26 mm	164	78

Gradient variation versus angle:

Angle [degree]

 The longer the magnetic length, the higher the gradient and tunability

Mechanical Design

- Built on a translation table to align the magnetic center with the electron beam, also to compensate the magnetic center excursion as the gradient is varied
- Adapted to laser beam passage
- Compatible with a vacuum environment
- Built into an Aluminum frame to counter-act the magnetic forces

Motors HARMONIC DRIVE, FHA-C mini Motors

- Very Compact (48.5 x 50 x 50 mm3)
- Each rotating magnet is connected to one motor to prevent the magnetic center excursion due to asymmetry
- Non magnetic belt connects the cylindrical magnet to the motor

Magnetic Measurements

(Rotating coil at SOLEIL)

(Stretched wire at LAL)

Measure the field integral

$$\frac{\int B_2.dl}{RL} [\text{T/m}]$$

B2: Normal quadrupolar termR: Coil radiusL: Magnetic length

- Multipole terms (Including gradient)
- Magnetic center excursion

$$\begin{cases} \Delta x = \frac{R(a_1a_2 + b_1b_2)}{a_2^2 + b_2^2} \\ \Delta z = \frac{R(a_1b_2 - a_2b_1)}{a_2^2 + b_2^2} \end{cases}$$

Multipole terms

Skew quadrupole: (Mechanical shimming)

16

Skew quadrupole: (Mechanical shimming)

$$\theta = \frac{1}{2} \arctan(\frac{a_2}{b_2})$$

(dashed) : Before shimming $heta_{before} pprox 2-5 mrad$

(line) : After shimming $\theta_{after} \approx 0.02 \ mrad$

Magnetic center evolution

Stretched Wire Repeatability test

Pulsed Wire Measurement:

- Place the three QUAPEVAs on the bench
- Send a short square pulse into a Tungsten wire passing through the 3 systems
- Track the wire deflection using a laser sensor which is proportional to the magnetic field

(Dashed) before the alignment (line) after alignment

> vertical axis horizontal axis

COXINEL:

Electron Beam measurement

X (mm)

A LANEX screen placed 64 cm away from the third QUAPEVA

Beam size reduction: 4.6 down to 1.8 mm (x) 1.8 down to 1 mm (z)

-5

X (mm)

-5

Electron Beam measurement (Skew quadrupole correction)

Measurement

 A LANEX screen placed 64 cm away from the third QUAPEVA

Simulation

QUAPEVAS Enable BPAC

Conclusion:

Magnetic performance:

- High gradient (200 T/m) + Large tunability (45%) achieved
- Low magnetic center excursion of ± 15 μm has been achieved

Application to COXINEL:

- A triplet (26 mm, 40.7 mm, 44.7 mm) has been installed at COXINEL and enabled us to transport, control and manipulate a highly divergent beam.
- One of the first tunable permanent magnet based quadrupoles commissioned in an accelerator line.
- The translation tables allowed for a BPAC (beam pointing alignment compensation).

Prospects:

Integrate a cooling system and using PrFeB magnets, to further enhance the gradient.

Use hyperbolic shaped poles to decrease the non systematic multipole terms.

Acknowledgement:

Thanks to

- The European Research Council for the advanced grant COXINEL (340015)
- The Fondation de la Cooperation Scientique for the Triangle de la Physique / valorisation contract QUAPEVA (2012-058T).

Thank you for your attention

Maximum Gradient

Intermediate Gradient

Minimum Gradient

Length [mm]	26	40.7	44.7	47.1	66	81.1	100
G_0							
a_3	14.6	35.1	-130.2	32.1	91.1	130.3	-2.9
a_4	-9.1	-14.9	-27.1	-100.4	-0.2	-68.6	-57.4
a_5	-20.3	-12.1	-38.6	8.3	0.84	-26.9	30.2
b_3	87.3	-34.8	-141.9	282	120.5	-108.5	-277.7
b_4	-1.5	-51.5	-25.1	13.4	24.2	-51.8	-8.9
b_5	-7.2	12.3	28.5	-4.8	-28.3	11.4	-49.5
G_M							
a_3	12.5	-153.1	-81.4	-19	120.4	124.9	40.3
a_4	-16	-19.9	-19.8	-95.7	-1.7	-76.5	-54.4
a_5	-22.2	-8.1	-45.6	13.5	0.2	-35.1	26.4
b_3	-1.6	-29	91.2	-309.4	131.4	-174.3	-190.4
b_4	-2.7	-45.8	-15.6	15.9	21.6	-45.2	10.1
b_5	-16.7	18.9	27.7	-10.2	-30.5	5.3	-41.2
G_m							
a_3	85.4	-107.5	-7.5	-21	148.8	1.3	8.3
a_4	-11.2	7.5	-38.7	-105.1	0.4	-0.6	-59
a_5	-27.5	3.9	-60.5	22.1	1.6	-0.2	25.9
b_3	39.1	36.8	211.4	-344.9	183.4	-1.3	-237.9
b_4	0.6	-67.3	22.6	9.4	11.7	-0.51	10.4
b_5	-9	32.7	52.5	-15.3	-18.4	0.1	-43

