# A Personal Perspective on the Status and Prospects for Plasma Accelerator Based Light Sources

# Wei Lu Tsinghua University The 60<sup>th</sup> ICFA Advanced Beam Dynamics Workshop FLS2018 March5-9 2018, Shanghai, China

# Outline

- Key physics of Plasma based wakefield accelerator (PBA)
- Current status of high quality PBA experiments
- PBA based Betatron/Compton sources
- PBA based FEL
- Summary

## **Plasma Based Wakefield Acceleration**



Wake

#### Very large gradient (~10-100GV/m) + small structures (~10-100um)

T.Tajima and J.M. Dawson PRL (1979) LWFA P.Chen, J.M. Dawson et.al. PRL (1983) PWFA

## **Significant Progress in Past Decade**



**Real Challenge for Plasma Based Acceleration** 

## From "Acceleration" to "Accelerator"

## Understand the physics:

Systematic understanding of all the relevant physics

## Develop the technology:

Lasers, plasma sources and structures, diagnostics .....

## Find the applications:

Science (light sources, colliders), industry, medical applications .....

## Key physics issues for a plasma accelerator

#### **The structure issue:**

Wake excitation for given drivers .....

#### ☐ The energy spread and efficiency issue:

Beam loading, pulse shaping, transformer ratio .....

#### □ The stability issue:

Driver evolution, matching, guiding, instabilities .....

#### ☐ The injector issue:

Self-injection, high quality controlled injection ....

#### □ The overall design and staging issue:

Parameter optimization for a plasma based accelerator to match the requirements on beam quality, staging, external injection ....

# An ideal regime for electron acceleration the Blowout/Bubble Regime





Driven by an electron beam: **nb>np** 

Driven by a laser pulse:  $a_0 > 2$ 

### Main advantages:

- Uniform acceleration across the transverse slice
- Ideal uniform focusing force for electron beam

Beam driver: Rosenzweig et al., PRA 1991; Lu et al., PRL 2006; Laser driver:

Mori et al., PAC proceedings 1991; Pukhov et al., APB 2002 Lu et al., PRSTAB 2007 Key questions for high quality electron acceleration

- Can uniform and high efficiency acceleration be achieved?
- Can the driver (laser or particle beam) propagate stably to form a stable structure?
- For beam drivers, can a good transformer ratio (TR) be achieved stably?
- Can very high quality beams ( low energy spread, high current, low emittance) be generated in PBA?
- Can different sections of accelerators be properly staged with well preserved quality?

# High efficiency uniform acceleration: Beam loading

#### **High efficiency + Uniform acceleration**



- For beam driver, there is no dephasing between bunches
- For laser driver, dephasing reduces the overall efficiency

#### W. Lu et al., PRL (2006), M. Tzoufras, et al., PRL (2008)

## Matched channel guided LWFA with external injection

| $\frac{\langle \Delta W \rangle}{\text{GeV}}$ | $\frac{P}{\mathrm{TW}}$ | $\frac{\tau}{\mathrm{fs}}$ | <u>w0</u><br>μ m | $\frac{n_p}{\mathrm{cm}^{-3}}$ | $\frac{L_{\phi}}{\mathrm{m}}$ | $\frac{\langle E_z \rangle}{\text{GeV/m}}$ | $\frac{\sigma_z}{\mu m}$ | $\frac{N}{10^{10}}$ |
|-----------------------------------------------|-------------------------|----------------------------|------------------|--------------------------------|-------------------------------|--------------------------------------------|--------------------------|---------------------|
| 0.4                                           | 15                      | 35.6                       | 10.68            | 2E+18                          | 0.0068                        | 59.08                                      | 1.5                      | 0.05                |
| 1.6                                           | 60                      | 71.2                       | 21.36            | 5E+17                          | 0.0542                        | 29.54                                      | 3                        | 0.1                 |
| 6.4                                           | 240                     | 142.4                      | 42.72            | 1.25E + 17                     | 0.4333                        | 14.77                                      | 6                        | 0.2                 |
| 25.6                                          | 960                     | 284.8                      | 85.44            | 3.13E+16                       | 3.4663                        | 7.385                                      | 12                       | 0.4                 |
| 102.4                                         | 3840                    | 569.6                      | 170.9            | 7.81E+15                       | 27.731                        | 3.693                                      | 24                       | 0.8                 |
| 409.6                                         | 15360                   | 1139.2                     | 341.8            | 1.95E+15                       | 221.84                        | 1.846                                      | 48                       | 1.6                 |
| 1638.4                                        | 61440                   | 2278.4                     | 683.5            | 4.88E+14                       | 1774.8                        | 0.923                                      | 96                       | 3.2                 |

#### 0.5-1600GeV single stage design of a0=2



Lu et al., PRSTAB 2007, Martins et al., Nat. Phys. 2010, Tzoufras et al., JPP 2012

#### A 40cm long LWFA achieving 6.4GeV by a 34J laser

Efficiency 5.5%, energy spread ~1%, charge 0.32nC

## A 40cm long LWFA achieving 6.4GeV by a 34J laser

#### Efficiency 5.5%, energy spread ~1%, charge 0.32nC

sqrt(VP-YZ\_0002) QEP-YZ 0002 Time =  $20.00 [1/\omega_p]$ Time =  $20.00 [1/\omega_p]$ 3.0 2 2 2.5 0 0 ξ [c / ω<sub>p</sub>] δ oep [n b] ξ [c / ω<sub>p</sub>] -4 -4 -3 0.5 -6 -6 0.0 -4 -2 4 -2 0 2 -4 0 2 4 Y [c / ω<sub>p</sub>]  $Y [c / \omega_p]$ 

#### A 40cm long LWFA achieving 6.4GeV by a 34J laser

#### Efficiency 5.5%, energy spread ~1%, charge 0.32nC



## High brightness injection schemes

|                        |                                            | I [kA] | Emittance<br>[nm] | Energy Spread<br>[MeV] | B<br>[A/m²/ra<br>d²] |
|------------------------|--------------------------------------------|--------|-------------------|------------------------|----------------------|
|                        | Trojan Horse                               | 0.3    | 40                | several                | 7e17                 |
| Ionization             | Downramp-assisted<br>Trajan Horse          | 1      | 20                | 2.2                    | 9e18                 |
| Injection <sup>1</sup> | Transverse colliding                       | 0.4    | 8.5/6             | 0.2, 0.012 (slice)     | 1.7e19               |
|                        | Two-color: Longi.                          | 0.3    | 50                | 1~2                    | 2.5e17               |
|                        | Two-color: Trans.                          | 0.03   | 60                | 1, 0.03 (slice)        | 2e16                 |
| Downramp               | Laser (10 <sup>19</sup> cm <sup>-3</sup> ) | 9      | 10                | 0.3                    | 2e20                 |
| Injection <sup>2</sup> | Beam (2.8e18 cm <sup>-3</sup> )            | 10     | 30                | 0.5                    | 2e19                 |

<sup>1</sup>B. Hidding et al., PRL 108, 035001 (2012); A. Knetsch et al., arXiv:1412.4844v1; F. Li et al., PRL 111, 015003 (2013); L. L. Yu et al., PRL 112, 125001 (2014); X. Xu et al., PRST-AB 17, 061301 (2014). <sup>2</sup>FACET-II Proposal V6 (2013); J. Grebenyuk et al., NIMA 740, 246 (2014); X. Xu et al., PRAB 20, 111303 2017

## High brightness injection schemes

|                        |                                            | l<br>[kA] | Emittance<br>[nm] | Energy Spread<br>[MeV] | B<br>[A/m²/ra<br>d²] |
|------------------------|--------------------------------------------|-----------|-------------------|------------------------|----------------------|
|                        | Trojan Horse                               | 0.3       | 40                | several                | 7e17                 |
| Ionization             | Downramp-assisted<br>Trajan Horse          | 1         | 20                | 2.2                    | 9e18                 |
| Injection <sup>1</sup> | Transverse colliding                       | 0.4       | 8.5/6             | 0.2, 0.012 (slice)     | 1.7e19               |
|                        | Two-color: Longi.                          | 0.3       | 50                | 1~2                    | 2.5e17               |
|                        | Two-color: Trans.                          | 0.03      | 60                | 1, 0.03 (slice)        | 2e16                 |
| Downramp               | Laser (10 <sup>19</sup> cm <sup>-3</sup> ) | 9         | 10                | 0.3                    | 2e20                 |
| Injection <sup>2</sup> | Beam (2,8e18 cm⁻³)                         | 10        | 30                | 0.5                    | 2e19                 |

<sup>1</sup>B. Hidding et al., PRL 108, 035001 (2012); A. Knetsch et al., arXiv:1412.4844v1; F. Li et al., PRL 111, 015003 (2013); L. L. Yu et al., PRL 112, 125001 (2014); X. Xu et al., PRST-AB 17, 061301 (2014).
<sup>2</sup>FACET-II Proposal V6 (2013); J. Grebenyuk et al., NIMA 740, 246 (2014); X. Xu et al., PRAB 20, 111303 2017

# Bright electron beam generation on a density downramp



Under proper driver and plasma condition, Electron beams with high current (~10kA), low emittance ( ~10nm rad) and low slice energy spread ( ~0.3MeV) may be generated!

> 1D downramp injection process analyzed: Bulanov PRE (1998), Suk PRL (2001)

Theory and simulation of transverse dynamics of injection process X. Xu et al., PRAB 20, 111303 (2017)

# **Energy gain**

#### LWFA



#### LBNL BELLA:

# <text><text><text><text><text>

**PWFA** 

SLAC FFTB

#### 4.25GeV, 6pC, 0.3mrad rms divergence

Leemans et al., PRL 113, 245002 (2014)

42GeV gain

Blumenfeld et al., Nature 15, 445, (2007)

# **High efficiency PWFA**

## ~30% energy conversion efficiency with 2% energy spread





#### SLAC FACET

Nature 2014

# **High charge LWFA**

~0.25nC charge within a mono-energetic peak



Couperus et al., Nat. Comm. 2017

**HZDR** 

# **Energy spread**

~1% relative energy spread

#### ~0.2MeV absolute energy

27.1MeV 11.38MeV



# Emittance



LBNL:

G. R. Plateau, et al., Phys. Rev. Letts. 109, 064802 (2012)

**0.2 mm mrad** normalized emittance measured using single shot Quad scan LMU/MPQ:

Weingartner et al., PRSTAB 15, 111302, 2012

# Repeatability



**35fs 55TW laser wakefield acceleration** S. Banerjee, et al., Phys. Rev. ST Accel. Beams 16, 031302 (2013)



Shock front downramp injection

Buck et al., PRL 110, 185006 (2013)

# **Betatron X-ray Source**



#### **Source Characteristics:**

- 10<sup>8-9</sup> photons/shots
- angular spread: 10's mrad
- ultrashort: <10 fs
- broadband: 1-100 keV
- source size: ~few microns

#### **Applications:**

- PBA diagnostics
- Phase contrast image
- -fs X-ray diffraction and absorption



## Bone tomography SCIENTI е MPERII DECUST z (mm) x (mm) 3 2 y (mm)

#### Tomography of a fly (Phase contrast)



#### Stable and polarized Betatron radiation using ionization injection



Pointing stability: 10% of the beam diameter Beam shape: 100% reproducible Energy stability (standard deviation): 10% of the mean energy Flux stability (standard deviation) : 15% of the mean flux Polarization degree: ~ 80%





# **PBA Based Compton Source**



# **PBA Based FEL**

The current key challenges for PBA based FELs is mainly due to the special beam features of PBA :

- Relatively large energy spread (~1%), leading to very large gain length ( 0.1% level is preferred)
- Small beam sizes with relatively large angular spread (~1mrad), together with 1% level energy spread, leading to large emittance growth during the transport to undulator
- Relatively large fluctuation in energy and pointing, making it hard to tune the beam optics



# **Current LWFA based programs**

TGU based:

Chican decompression for energy spread reduction

SIOM/SINAP

Jena/KIT

SOLEIL/LOA: COXINEL

LAOLA

LBNL (with APL)



Currently most these programs are mainly working on Equipment preparation, installation and beam transport tuning

The near term goal is to observe FEL gain

M E Couprie *et al* 2016 *Plasma Phys. Control. Fusion* **58** 034020 J. Van Tiblorg et al., AIP Conference Proceedings **1812**, 020002 (2017);

Z. Huang et al., PRL 109, 204801, 2012

#### SOLEIL/LOA: COXINEL Aiming at observing FEL gain (10MW level)



M E Couprie et al 2016 Plasma Phys. Control. Fusion 58 03402

Table 1. Main COXINEL electron parameters at 180 MeV.

| Electron characteristics   |                | Cell<br>exit | Undulator entrance |
|----------------------------|----------------|--------------|--------------------|
| Energy                     | MeV            | 180          | 180                |
| Normalized emittance total | $\pi$ .mm.mrad | 1            | 2.4                |
| Normalized emittance slice |                | 1            | 1.3                |
| Divergence                 | mrad           | 1            | 20                 |
| Size                       | $\mu$ m        | 1            | 60 (slice)         |
| Duration                   | fs             | 3.3          | 36                 |
| Charge                     | pC             | 34           |                    |
| Peak current               | kA             | 4            | 0.5                |
| Energy spread total        | %              | 1            | 1.1                |
| Energy spread slice        | %              | 1            | 0.13               |



# Planned PWFA based programs

• FACETII (no Undulator) SLAC

• Flash Forward (Undulator planned) DESY

• SXFEL-PWFA (SINAP/THU) (Undulator installed)

# SXFEL facility in Shanghai





S. Huang et al., IPAC proceeding 2017

A HTR PWFA (TR=4) with high brightness injection campaign is planned at SXFEL in 2017-2019

# Summary

- The physics of plasma based wakefield acceleration has been well established over the decades, and stable, efficient, high quality acceleration of electron beams are within reach in future
- Synchrotron like Light sources based on PBA (Betatron and Compton sources) are well passing the proof of principle stage, further optimization and application are on-going
- FEL based on PBA are very challenging and active research area, currently with many dedicated groups adopting different schemes, aiming at achieving observation of FEL gain
- Further improving the beam quality (especially the energy spread down to 0.1% level) and stability are the key for the success of FEL based on PBA

# Thank you for your attention!