

Ultrashort Pulse Generation and Superradiance in FELs

Xi Yang¹ and Luca Giannessi²

NSLS-II in Brookhaven National Laboratory
 Elettra Sincrotrone Trieste and ENEA CR Frascati

Outline

- Peak power and pulse duration limits in FEL amplifiers
- Methods to achieve single spike at saturation
- Saturation effects
 - Pulse shortening & power increase
 - Pulse splitting and tail formation after saturation
- Tail structure
 - FEL pulse splitting into head (L_{+}) and tail (L_{-}) modes after saturation
- Tail suppression

Motivation: Single-Shot Isolated-Molecule Imaging

- Key issues:
 - Time scale (sub-fs): Acquiring single shot images before radiation damage/Coulomb explosion of the sample takes place
 - Spatial resolution: Resolving the structure of proteins that cannot be crystallized in single-molecule level
 - High Intensity: **1.3·10¹¹** photon/pulse at *P*=150 GW, λ =0.4 nm with σ_{t-FWHM} = 400 as
- Such conditions can be met by XFEL with peak power of multi-GW and subfemtosecond temporal duration

Number of "bounded" electrons versus time of molecules illuminated by XFEL radiation with power P =150 GW and λ = 0.4 nm

A. Fratalocchi and G. Ruocco PRL 106, 105504 (2011)

FLS2018

Motivation: Single-Shot Isolated-Molecule Imaging

- Key issues:
 - Time scale (sub-fs): Acquiring single shot images before radiation damage/Coulomb explosion of the sample takes place
 - Spatial resolution: Resolving the structure of proteins that cannot be crystallized in single-molecule level
 - High Intensity: **1.3·10¹¹** photon/pulse at *P*=150 GW, λ =0.4 nm with σ_{t-FWHM} = 400 as
- Such conditions can be met by XFEL with peak power of multi-GW and subfemtosecond temporal duration

Number of "bounded" electrons versus time of molecules illuminated by XFEL radiation with power P =150 GW and λ = 0.4 nm

A. Fratalocchi and G. Ruocco PRL 106, 105504 (2011)

Single spike:Peak Power and Pulse Duration Limits at FEL Saturation (no taper)

- Limit by saturation:
 - Power 20 to 40 GW at $\lambda = 0.1$ nm
- Limit by gain bandwidth
 - Pulse duration down to 100 as (FWHM)
- In order to meet the sub-fs

 multi-GW (*tens of*) of
 peak power we get close
 to the gain bandwidth limit
 and to saturation
- It is possible to get to this condition

- Period 3.3 cm
- K = 3.5

- $\epsilon_n = 0.5 \text{ mm-mrad}$
- Reasonable assumptions of I_{pk} and β
- L. H. Yu, S. Krinsky, Phys. Rev. A. 35 3406-3422 (1987)
- M. Xie LINAC 1995

Methods to Achieve Single Spike at Saturation

• A few ways to trigger the formation of a single spike :

- Short electron bunch single spike
 J. Rosenzweig et al, NIMA 593(2008)
- Chirp + Taper

200 as (FWHM) and 100 GW in λ ~1Å (sim) E. Saldin et al, PRST-AB 9, 050702 (2006) E_{out} increases >10 times in single spike SASE at λ ~ 540nm (exp) L. Giannessi et al, PRL 106, 144801 (2011)

- Slotted foil

Sub-fs 10GW x-ray pulse P. Emma et al. PRL 92, 074801 (2004)

- Multi-foil + Electron Delay 500as (FWHM) and 1TW at λ ~1Å (sim) E. Prat and S Reiche PRL 114, 244801 (2015)
- Fresh bunch self-seeding

50 GW, 9 fs at 5.5keV C. Emma et al, APL 110, 154101 (2017)

- Chirp + Taper + Fresh bunch self-seeding 0.5TW and 260as (FWHM) at λ =1.5nm S. Huang et al, PRAB 19, 080702 (2016)
- When the short pulse reaches saturation -> superradiance

Saturation of the single spike

- When the peak power exceeds ρP_e
- Superradiance*
 - Modification of the pulse properties due to the electron longitudinal synchrotron oscillations.
 - Scaling relations**: $P_L \propto z^2$, $E_L \propto z^{3/2}$, $\sigma_t \propto z^{-1/2}$
- *R. Bonifacio, B. W. J. Mc Neil, P. Pierini, PRA 40, 4467 (1989)
- R. Bonifacio, L. De Salvo Souza, P. Pierini, N. Piovella, NIM A296, 358 (1990)

** see: L. Giannessi, P. Musumeci, S. Spampinati, JAP 98, 043110 (2005)

Experiments: Watanabe et al. PRL 98, 034802 (2007) SPARC, Frascati: PRL 106, 144801 (2011) – PRL 108, 164801 (2012) – PRL 110, 044801 (2013)

MOVIE 1 AND MOVIE 2

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

 $\tau = z/L_u$

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

 $\tau = z/L_u$

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

 $\tau = z/L_{u}$

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

 $\tau = z/L_u$

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

 $\tau = z/L_u$

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

 $\tau = z/L_u$

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

 $\tau = z/L_u$

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

 $\tau = z/L_u$

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

 $\tau = z/L_u$

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

 $\tau = z/L_u$

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

- Local saturation condition is met
- P_{sr} exceeding saturation and increasing as $\propto z^2$
- σ_t shortening as $\propto z^{-1/2}$
- It is desired to get into the superradiance regime (indicated by L₊) with higher power and shorter pulse length
- Once getting into the saturation, the tail is formed
- The pulse length is determined by the structure between L+ and L-, both from the same origin of pulse splitting.

Longitudinal profile of the radiation field amplitude along the e- beam coordinate ζ as it propagates along the undulator with coordinate τ

Single electron FEL

Notes

- Pulse duration is determined by the slippage distance over ½ synchrotron period, i.e. ½ the Fourier limit of a pulse with bandwidth
- Secondary peaks induced by residual bunching
- Peak amplitudes decaying with beam energy spread
- Phase shift of between peaks
- Secondary peak in the tail, the trailing edge is still reaching saturation
- Peak propagation speed ... see next

Condition for saturation $P(z) = P_0 \exp\left\{-\frac{[\zeta - vz]}{2\sigma_{\zeta}^2} + \frac{z}{L_g}\right\} = P_s \simeq 1.6 \rho_{fel} P_E$

Condition for saturation $P(z) = P_0 \exp\left\{-\frac{[\zeta - vz]}{2\sigma_{\zeta}^2} + \frac{z}{L_g}\right\} = P_s \simeq 1.6 \rho_{fel} P_E$

Peak velocity

$$v = \begin{cases} v_e = \lambda_0 / 3\lambda_u \\ v_s = \lambda_0 / \lambda_u \end{cases}$$

Condition for saturation $P(z) = P_0 \exp z$

$$\left\{-\frac{[\zeta - vz]}{2\sigma_{\zeta}^2} + \frac{z}{L_g}\right\} = P_s \simeq 1.6 \,\rho_{fel} P_E$$

Two roots are plotted as solid lines indicated by L_{+} and L_{-}

Peak velocity

$$v = \begin{cases} v_e = \lambda_0 / 3\lambda_u \\ v_s = \lambda_0 / \lambda_u \end{cases}$$

Condition for saturation $P(z) = P_0 \exp\left\{-\frac{[\zeta - vz]}{2\sigma_{\zeta}^2} + \frac{z}{L_g}\right\} = P_s \simeq 1.6 \rho_{fel} P_E$

Two roots are plotted as solid lines indicated by L_{+} and L_{-}

Peak velocity

$$v = \begin{cases} v_e = \lambda_0 / 3\lambda_u \\ v_s = \lambda_0 / \lambda_u \end{cases}$$

$$\frac{1}{2\zeta} = \sqrt{\left(\frac{v_s z}{\sigma_\zeta}\right)^2 + 2\left(\frac{z - z_{sat}}{L_g}\right) + 2\frac{v_e z}{\sigma_\zeta}\sqrt{2\left(\frac{z - z_{sat}}{L_g}\right)}}$$

Corrected for saturation

Condition for saturation $P(z) = P_0 \exp\left\{-\frac{[\zeta - vz]}{2\sigma_c^2} + \frac{z}{L_g}\right\} = P_s \simeq 1.6 \rho_{fel} P_E$

Two roots are plotted as solid lines indicated by L_{+} and L_{-}

Peak velocity

$$v = \begin{cases} v_e = \lambda_0 / 3\lambda_u \\ v_s = \lambda_0 / \lambda_u \end{cases}$$

$$\frac{1}{c_{\zeta}} = \sqrt{\left(\frac{v_s z}{\sigma_{\zeta}}\right)^2 + 2\left(\frac{z - z_{sat}}{L_g}\right) + 2\frac{v_e z}{\sigma_{\zeta}}\sqrt{2\left(\frac{z - z_{sat}}{L_g}\right)}}$$

Corrected for saturation

Group velocity of the head mode is obtained by differentiating L_{+} with respect to z FLS2018

The correlation of the tail structure with the longitudinal phase space of the e-beam - Long seed, two symmetric roots

Pulse splitting in short wavelength seeded FEL M. Labat *et al* PRL 103, 264801 (2009)

Length of the tail is given by L_{+} - L_{-}

Local gain

lm. ref. Index

Exponential gain

Superradiance

Head Peak Moving at Superluminal Speed

FLS2018

ζ

Tail after saturation: E_{tail} is ~30% of E_{main} and pulse is lengthening ~10 times

Tail after saturation: E_{tail} is ~30% of E_{main} and pulse is lengthening ~10 times

- Tail can have a significant amount of energy, ~30% of the main pulse
- Pulse length (L₊-L₋) gets longer ~10times
- The presence of the tail ui increases pulse duration and reduces the signal to noise ratio

FLS2018

τ

Suppress tail via increasing the energy spread

- The laser heater suppressing microbunching instability may be considered to increase the energy spread (σ_E/E) to suppress the tail to (< 1%) of the main pulse
- Time-bandwidth product (<0.7)
- A substantial reduction in the total pulse duration accompanied by an increase of the pulse longitudinal coherence
- Reduction in spectral broadening

τ

ζ

τ

ζ

E_{tail}/E_{main} as a function of $(\sigma_{E}/E)/\rho$

Summary

- Time-resolved single-shot imaging of isolated molecules or non-periodic structures requires an XFEL with peak power at multi-GW level and subfemtosecond temporal duration => FEL operating in single spike superradiant regime
- When single spike reaches saturation, pulse splits and tail is formed. We studied this process in ideal conditions, "flat" beam parameters, no taper
- Peak of the pulse propagates at superluminal speed
 The tail is constituted by a train of pulses with both transverse and longitudinal coherence and decaying amplitudes
- Suppressing the tail to <1% of the main pulse, can be achieved by inducing additional energy spread. Observed a factor of 10 reduction in the pulse duration and a factor of 20 reduction in E_{tail}/E_{main}