Progress towards BELLA Center's Free Electron Laser driven by a Laser Plasma Accelerator

Jeroen van Tilborg, BELLA Center Lawrence Berkeley National Laboratory

Future Light Sources, March 6th 2018

BELLA Center pre-2017: BELLA PW & TREX 100 TW >2017: TREX replaced by 100TW Thomson scattering & 100TW FEL

BELLA Center pre-2017: BELLA PW & TREX 100 TW >2017: TREX replaced by 100TW Thomson scattering & 100TW FEL

BELLA Center pre-2017: BELLA PW & TREX 100 TW >2017: TREX replaced by 100TW Thomson scattering & 100TW FEL

head BELLA Center

- LPA FEL project: design & simulations
- Results: jet-blade LPA
- Results: Active Plasma Lens
- Results: Emittance measurements
- VISA undulator
- LPA FEL facility

Senior scientist (theory)

Rapid beam capture, chicane, and EM triplet: matching to VISA undulator with embedded FODO lattice

Maier et al. PRX 2012, Schroeder et al. FEL2013

Simulations are performed using a suite of tools:

• Elegant for lattice optimization and matching routines

Simulations are performed using a suite of tools:

Elegant for lattice optimization and matching routines

Simulations are performed using a suite of tools:

Elegant for lattice optimization and matching routines

- Elegant for lattice optimization and matching routines
- Full particle tracking with collective effects, CSR modeled in elegant, space charge with Astra

- Elegant for lattice optimization and matching routines
- Full particle tracking with collective effects, CSR modeled in elegant, space charge with Astra

M. Borland LS-287. , 2000.

- Elegant for lattice optimization and matching routines
- Full particle tracking with collective effects, CSR modeled in elegant, space charge with Astra

- Elegant for lattice optimization and matching routines
- Full particle tracking with collective effects, CSR modeled in elegant, space charge with Astra
- Final particle distribution ported to Genesis, 10 time dependent simulations with different shot noise seeds are run

- Elegant for lattice optimization and matching routines
- Full particle tracking with collective effects, CSR modeled in elegant, space charge with Astra
- Final particle distribution ported to Genesis, 10 time dependent simulations with different shot noise seeds are run

- Elegant for lattice optimization and matching routines
- Full particle tracking with collective effects, CSR modeled in elegant, space charge with Astra
- Final particle distribution ported to Genesis, 10 time dependent simulations with different shot noise seeds are run

High brightness LPA source coupled to properly designed transport enables compact FEL at EUV photon energies

High performance: 25 pC, $\sigma_{\gamma} = 1.0\%$, $\varepsilon_n = 0.3 \ \mu m$, $\sigma_z = 1.0 \ \mu m$

- Charge per percent energy spread is most important (less sensitive to variations in emittance)
- Gain in radiation power of order x100

High brightness LPA source coupled to properly designed transport enables compact FEL at EUV photon energies

High performance: 25 pC, $\sigma_{\gamma} = 1.0\%$, $\varepsilon_n = 0.3 \ \mu m$, $\sigma_z = 1.0 \ \mu m$

- Charge per percent energy spread is most important (less sensitive to variations in emittance)
- Gain in radiation power of order x100

Jet-blade LPA developed: Localized injection at sharp density down ramp

Swanson *et al.* PR-AB 20, 051301 (2017)

Down ramp injection:

Bulanov, S, et al., *PRE* (1998), Suk, H., et al., PRL (2001), Geddes, C.G.R. et al., *PRL* (2008), Gonsalves, A.J. et al., *Nature* (2011)

Swanson *et al.* PR-AB 20, 051301 (2017), Tsai *et al.* Phys. Plasmas (submitted)

() ENERGY

(G) ENERGY

- Down-ramp provides controlled injection
- Tunable & stable
- Tilted jet and extensive plasma characterization \rightarrow optimum performance
- 10-50 pC, 2-6% dE/E, 50 to >200 MeV

Active plasma lenses developed at LBNL, great potential for compact applications

2015: LBNL re-developed active plasma lens

- Radial-symmetric
- Tunable with discharge current
- Strong gradients multi-kT/m (<10 cm-scale focal lengths for GeV beams)
- Now also at DESY, Frascati, CERN, Rutherford

Panofski *et al.* RSI 1950 van Tilborg *et al.* PRL **115**, 184802 (2015)

23

APL radial symmetry & short focal length enhance the energy bandwidth of the transport system

APL radial symmetry & short focal length enhance the energy bandwidth of the transport system

APL radial symmetry & short focal length enhance the energy bandwidth of the transport system

C

55.35

55.4

55.45

55.5 55.55 55.6

Energy [MeV]

• Slippage \rightarrow photons remain overlapped with e-beam

Strong focusing

• Divergence is reduced closed to source (less emittance growth, less bunch lengthening)

Migliorati et al. PRSTAB 2013, Loulergue et al. New. J. Phys. 2015

55.65 55.7 55.75

→ X

Short e-beam duration mitigates wakefield deterioration

Developed high-resolution setup to measure singleshot energy-resolved emittance

- Single-shot emittance for given energy slice
- First pioneered Weingartner et al. PRAB 2012
- Optimized spatial/energy resolution & stability \rightarrow LPA parameter scans
- Compare measured $\sigma_v(E)$ to transport simulations source-to-screen
- Higher-order transport model was used: 1st-order approximation was found to be adequate

Developed high-resolution setup to measure singleshot energy-resolved emittance

- First pioneered Weingartner et al. PRAB 2012
- Optimized spatial/energy resolution & stability → LPA parameter scans
- Compare measured $\sigma_v(E)$ to transport simulations source-to-screen
- Higher-order transport model was used: 1st-order approximation was found to be adequate

Barber et al. Phys. Rev. Lett. 119, 104801 (2017)

- Similar e-beams, two injection mechanisms
- Down ramp injection best at $\epsilon_n < 1 \ \mu m$ (at 2 pC/MeV)
- Space charge over 2.7m plays (partial) role
- Confirmed by simulations
- First-of-kind data in LPA community (stability)
- Diagnostic and sub-µm demonstration critical to FEL and other applications

- Similar e-beams, two injection mechanisms
- Down ramp injection best at ϵ_n <1 µm (at 2 pC/MeV)
- Space charge over 2.7m plays (partial) role
- Confirmed by simulations
- First-of-kind data in LPA community (stability)
- Diagnostic and sub-µm demonstration critical to FEL and other applications

Assembled state-of-the-art magnet test bench for VISA undulator using pulsed wire method (UCLA/Brookhaven collaboration)

VISA undulator Carr *et al.* PRSTAB **4**, 122402 (2001) 4 FODO cells per section. 4 one-meter sections

Parameter	Symbol	Value
Undulator period	λ_w	1.8 cm
Undulator length	L	4 m
Undulator Parameter	$K \ (ar{K})$	1.26(0.89)

Assembled state-of-the-art magnet test bench for VISA undulator using pulsed wire method (UCLA/Brookhaven collaboration)

Measurement proportional to first field integral of 1m segment

0.2 0.1

0.0

5

Time (ms) VISA undulator Carr et al. PRSTAB 4, 122402 (2001) 4 FODO cells per section. 4 one-meter sections

Parameter	Symbol	Value
Undulator period	λ_w	1.8 cm
Undulator length	L	4 m
Undulator Parameter	$K~(ar{K})$	1.26(0.89)

10

Assembled state-of-the-art magnet test bench for VISA undulator using pulsed wire method (UCLA/Brookhaven collaboration)

Displacement (µm)

0.2

0.0 -0.1 -0.2

Measurement proportional to first field integral of 1m segment

⁵ VISA undul

VISA undulator Carr *et al.* PRSTAB **4**, 122402 (2001) 4 FODO cells per section. 4 one-meter sections

Parameter	Symbol	Value
Undulator period	λ_w	1.8 cm
Undulator length	L	4 m
Undulator Parameter	$K~(ar{K})$	1.26(0.89)

39

10

FEL-dedicated single-table laser system developed Radiation caves being re-commissioned

100 TW laser system

- mJ-level front-end: COHERENT
- multi-J amplifier: home-built
- Single GAIA pump (THALES)

FEL-dedicated single-table laser system developed Radiation caves being re-commissioned

100 TW laser system

- mJ-level front-end: COHERENT
- multi-J amplifier: home-built
- Single GAIA pump (THALES)

FEL-dedicated single-table laser system developed Radiation caves being re-commissioned

• Single GAIA pump (THALES)

Summary

- Design and simulations completed for LPA FEL line
- Down-ramp jet-blade LPA developed: stable, tunable e-beams
- Active Plasma Lens offers advantages to FEL application
- First-of-kind LPA emittance parameter scans performed: down-ramp favorable to ionization injection
- VISA undulator being characterized & fiducialized section by section
- FEL-dedicated 100TW-driven LPA near completion

the end

Higher order transport terms can influence the emittance measurements (only at large divergence)

$$\sigma_y(E) = \sigma_{y0} \sqrt{\left(\left[R_{34}(E^*) \right]^2 + \left[T_{346}(E^*) \right]^2 \frac{\beta_x \epsilon_x}{\gamma^2 \eta_x^2} \right) \left(\frac{\epsilon_y}{\gamma \sigma_{y0}} \right)^2 + \left[R_{34}(E^*) \right]^2 \sigma_{y0}^2}$$

$$\sigma_{y}(E) = \sqrt{[R_{34}(E^{*})]^{2} \left(\frac{\epsilon_{y}}{\gamma \sigma_{y0}}\right)^{2} + [R_{33}(E^{*})]^{2} \sigma_{y0}^{2}}, \quad (1) \qquad \begin{array}{c} R_{33}(E) = 0.91(E - 57) - 14\\ R_{34}(E) = 0.21(E - 57) \end{array}$$

- Includes coupling divergence and energy resolution
- Need to rely on good design of transport lattice and good characterization of all transport elements
- Still, need to consider influence of uncertainty in the lattice, i.e. positioning error PMQ

Including 2nd order optics, the function describing $\sigma_y(E)$ becomes more complicated 48

Critical goal: align and fiducialize undulator. Confident that we can realize <50 micron alignment accuracy

- Magnetic axis located with ~5 micron precision
- With laser tracker, all fiducial points located with 10 micron precision
 - Can define ideal e-beam axis well within 50 microns

Critical goal: align and fiducialize undulator. Confident that we can realize <50 micron alignment accuracy

- Magnetic axis located with ~5 micron precision
- With laser tracker, all fiducial points located with 10 micron precision
 - Can define ideal e-beam axis well within 50 microns

