Undulator radiation after COXINEL transport line with a Laser Plasma Acceleration source (Run 3 & 4)

A.Ghaith on behalf of COXINEL collaboration (SOLEIL – LOA – PHLAM)

FLS

March 3 – 9

Introduction : Laser Plasma Acceleration (LPA)

Europraxia: https://phys.org/news/2016-04-eupraxia-world-first-plasma-facility-strong.html

New technique to accelerate particles

 Accelerator size reduced by orders of magnitude

(1)

Tajima, T., and J. M. Dawson. "Laser electron accelerator." *Physical Review Letters* 43.4 (1979): 267.

How does it works?

- Focus an intense laser at a gas chamber
- Electrons pushed away from the path of laser (ponder-motive force) whereas ions are not affected
- Electron beam trapped between the laser pulse and the Wakefield

Introduction : Laser Plasma Acceleration

Typical beam characteristics using LPA source

Beam Quality	Value
Energy Acceleration	~ GeV/cm
Peak Current	5-10 kA
Bunch Length	few fs
Normalized emittance	few mm.rad
divergence	few mrads
Energy spread rms	1-10%

V. Malka, J. Faure, C. Rechatin, A. Ben-Ismail, J. Lim, X. Davoine, and E. Lefebvre, Laser-driven accelerators by colliding pulses injection: A review of simulation and experimental results, *Physics of Plasmas(1994-present)*, vol. 16,no. 5, pp. 056703, 2009

E. Esarey, C. Schroeder, and W. Leemans, Physics of laserdriven plasma-based electron accelerators, *Reviews of Modern Physics*, vol. 81, no. 3, pp. 1229, 2009

Undulator Radiation has been successively observed using LPA source

H.-P. Schlenvoigt, K. Haupt et a, "A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator," *Nature Physics*, vol. 4, no. 2, pp. 130–133, 2008

M. Fuchs, R. Weingartner et al. "Laser-driven soft-X-ray undulator source," Nature physics, vol. 5, no. 11, pp. 826-829, 2009.

. . . .

M. P. Anania et al., "The ALPHA-X beam line: toward a compact FEL," Proceedings of IPAC, vol. 5, paper TUPE052, pp. 2263–2265, 2010.

What about FEL?

Free Electron Laser (FEL)

$$L_{sat} = 20L_g$$

Requirements:

$$\begin{cases} \epsilon_N < \frac{\gamma \lambda}{4\pi} \\ \sigma_{rms} < \rho \end{cases}$$

 \mathcal{E}_N : Normalized Emittance γ : Lorentz factor σ_{rms} : Energy spread λ : Resonant Wavelength

Free Electron Laser (FEL)

Divergence and energy spread must be decreased to enable FEL amplification

• High gradient quadrupoles

• Chicane

• Plasma lens

T. Hosokai et al, PRL 97, 075004 (2006) C. Thaury et al. Nature Comm. 6, 6860 (2015)

o TGUs

T. Smith, J. M. J. Madey, L. R. Elias, and D. A. G. Deacon, J. Appl. Phys. 50, 4580 (1979)Z. Huang et al., Phys. Rev. Lett. 109, 204801 (2012)

A. R. Maier et al., Phys. Rev. X 2, 031019 (2012)

COXINEL Motivation

Beam manipulation choices:

High gradient quadrupoles are used (200 T/m) to handle the divergence

A Chicane accompanied with a slit to reduce the energy spread

□ 1st step: Control, manipulate and transport the beam

2nd step: Observe Undulator radiation

□ 3rd step: Demonstrate FEL amplification

COXINEL Baseline reference case:

Electron Beam parameters :

After beam manipulation

Parameters	Source	Undulator
Divergence	1 mrad	0.1 mrad
Beam size	$1 \ \mu m$	50 µm
Bunch length (rms)	3.3 fs	33 fs
Charge	34 pC	34 pC
Peak Current	4.4 kA	440 A
Energy spread	1% rms	0.1% rms
Normalized emittance	1 mm.mrad	1.7 mm.mrad

At 200 nm wavelength (γ =344):

$$ho = 1.2 \times 10^{-3}$$

 $L_g = 0.74 m$
 $L_{sat} = 15 m$

$$\begin{cases} \epsilon_N < \frac{\gamma \lambda}{4\pi} &= 5.48 \text{ mm.mrac} \\ \sigma_{rms} < \rho &= 0.12\% \end{cases}$$

***** FEL doable with such manipulation

Presentation of COXINEL: Electron Source

COXINEL : COherent X-ray source INferred from Electrons accelerated by Laser

Khojoyan, M., et al. "Transport studies of LPA electron beam towards the FEL amplification at COXINEL." *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 829 (2016): 260-264.

Couprie, Marie-Emmanuelle, et al. "Advances on the LUNEX5 and COXINEL Projects." (2015): WEP078.

Presentation of COXINEL: Magnetic Elements

 High tunable gradient Permanent magnet based quadrupoles (QUAPEVAs)
 WEA2WD01

VV EA

- Four steerers
- De-mixing Chicane: 4 electro-magnet dipoles

4 electro-magnet quadrupoles

• Cryo-ready undulator THP

THP2WD01

 \circ Dipole dump

Presentation of COXINEL: Diagnostic Elements

COXINEL: COherent X-ray source INferred from Electrons accelerated by Laser

M. Labat et al., "Electron and photon diagnostics for plasma acceleration-based FELs." Journal of synchrotron radiation 25.1 (2018).

QUAPEVAs (Permanent magnet quadrupole with tunable high gradient): Patent

C. Benabderrahmane, M. E. Couprie, SOLEIL, F. Forest, O. Cosson Sigmaphi, "Multi-pôle magnétique réglable", patent application WO2016034490 (10 March 2016).
C. Benabderrahmane, M. E. Couprie, SOLEIL, F. Forest, O. Cosson Sigmaphi, "Adjustable magnetic multipole," Europe patent application WOBL14SSOQUA/CA (27 August 2015)

WEA2WD01

- Permanent magnet based
- Variable gradient (100 T/m :::> 200 T/m)
- Magnetic center excursion ± 15 μm
- Hor. & Vert. motorized translation to adjust alignment and BPAC

F. Marteau, A. Ghaith ... M. E. Couprie (2017). Variable high gradient permanent magnet quadrupole (QUAPEVA). *Applied Physics Letters*, 111(25), 253503.

electron laser amplification." Plasma Physics and Controlled Fusion 58.3 (2016): 034020.

E lectrom agnetic

4 electro-magnet

Cryo-ready Undulator:

Valléau, M., et al. "Development of cryogenic undulators with PrFeB magnets at SOLEIL." *AIP Conference Proceedings*. Vol. 1741. No. 1. AIP Publishing, 2016.

Operates at RT due to infrastructure reasons

	Item	Value
╧ <mark>┶╴</mark> ╫╶╢╶┫╌┫╌┫╴┲╴┲╴┝┥┝┥┝┥┝┥┝┥┝╸┝╸┝╸┝╸┝╸┝╸┝╸┝╸┝╸┝	Technology	Hybrid
	Magnet Material	Hitachi-CR53 $Pr_2Fe_{14}B$
AGESSERCICEBBBEFTNA.	Remanence Field	1.32 T
	Coercivity H_{cj}	1.63 T
	Pole material	Vanadium Permandur
╔╃╜╜ ╔╔╻╘┝┥ ┙┙╵┥┥ ╹╹╹╹╹	Period	18 mm
	Number of periods	107

RADIA

O. <u>Chubar</u>, P. <u>Elleaume</u>, and J. <u>Chavanne</u>, "A three-dimensional <u>magnetostatics</u> computer code for insertion devices," Journal of <u>synchrotron</u> radiation}, vol.~5, no.~3, pp.~481--484, 1998.

THP2WD01

Development and operation of a Pr2Fe14B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line, C. Benabderrahmane, M. Valléau, A. Ghaith, P. Berteaud, L. Chapuis, F. Marteau, F. Briquez, O. Marcouillé, J.-L. Marlats, K. Tavakoli, A. Mary, D. Zerbib, A. Lestrade, M. Louvet, P. Brunelle, K. Medjoubi, C. Herbeaux, N. Béchu, P. Rommeluere, A. Somogyi, O. Chubar, C. Kitegi, and M. E. Couprie, Phys. Rev. Accel. Beams 20, 033201(2017)

COXINEL Transport Line

Beam Transport: Electron spectrometer

 Typical spectra produced by laser plasma acceleration in a Broad Band regime (Ionization injection)

❑ Large energy spread (50 MeV to 200 MeV)

$$\sigma'_z = 1.5 mrad - 3.5 mrad$$

André, Thomas, et al. "Electron Transport on COXINEL Beam Line." 8th Int. Particle Accelerator Conf. (IPAC'17), Copenhagen, Denmark, 14â 19 May, 2017. JACOW, Geneva, Switzerland, 2017.

Beam Transport: Electron spectrometer

Dipole and spectrometer just after the gas jet

- Typical spectra produced by laser plasma acceleration in a Broad Band regime (Ionization injection)
- Large energy spread (50 MeV to 200 MeV)

$$\sigma'_{z} = 1.5 mrad - 3.5 mrad$$

André, Thomas, et al. "Electron Transport on COXINEL Beam Line." 8th Int. Particle Accelerator Conf. (IPAC'17), Copenhagen, Denmark, 14â 19 May, 2017. JACOW, Geneva, Switzerland, 2017.

Beam Transport: Screen 1

Beam Transport: Screen 1

Undulator Radiation

1% rms energy spread; Divergence and Beam size (1 mrad, 1mm)

Photon Beam Emitted (SRWE simulation)

Chubar, Oleg, and P. Elleaume. "Accurate and efficient computation of synchrotron radiation in the near field region." proc. of the EPAC98 Conference. 1998.

Beam size = $700 \,\mu m$

Hence the so-called moon shape!

Photon Beam Diagnostics line

Undulator:

- Planar (linear polarization)
- 2 m long (18 mm period)
- Peak Field = 1.23 T at 4.55 mm gap

Lens:

- Material: Calcium Flouride
- Shape: spherical
- Focal length = 240 mm

CCD camera (Run3)

Spectrometer (Run4)

- IHR320 HORIBA
- 3 gratings (600 gr/mm, 1200 gr/mm, 3200 gr/mm)

Undulator radiation have been observed for different gaps and different electron slit width:

- Transverse beam shape using a CCD camera
- Flux using a spectrometer

Results are not uploaded to avoid issues with publishing the results

Conclusion:

Beam pointing alignment compensation enabled good handling of a highly divergent beam along an 8 m long transport line with different magnetic elements

□ Observation of undulator radiation after manipulation beam line

Undulator radiation gives an insight on the electron beam quality

Free Electron Laser Results

Just Kiding

Just Kiding

Just Kiding

Thank you for your attention