

Institute of High Energy Physics

Ion Instability in the HEPS Storage Ring

Saike Tian, Na Wang

Institute of High Energy Physics

March 6, 2018

ICFA FLS, 5-9 March , 2018, Shanghai Institute of Applied Physics, CAS

High Energy Photon Source

1 Introduction

2 Ion trapping

3 Fast beam-ion instability (FBII)

.....

.....

.....

4 Summary

- Ion instabilities include conventional ion trapping instability and fast beam-ion instability.
- •In the case of storage rings, ions are generated not only by collisional ionization from the beam, but also by synchrotron radiation. Ions generated by synchrotron radiation are far outside the beam area and are equally distributed between the beam and the chamber wall. The density of the radiation-generated ions is low compared with the density of ions generated by collisional ionization, they can be ignored.
- •These ions in the beam result in beam emittance growth, beam size blow-up, additional tune shifts etc.

• Different from other instabilities, ions related instability rarely causes beam loss. When the bunches' amplitude is larger (compare with beam size), the nonlinear force automatically slow down the instability.

vertical oscillation amplitude of different bunches

Beam-ion Instabilities in SPEAR3 Suppression of beam-ion instability in electron rings with multi bunch train beam filling

HEPS Lattice Design Parameters

•A reference design of the 7BA lattice for the HEPS main ring

- 48 identical hybrid 7BAs, with a cell length of about 28m
- 48 dispersion-free 6.15-m straight sections, with beta functions of 8.9/4.1 m.
- 4 outer dipoles with longitudinal gradients; 3 inner dipoles with defocusing gradients.
- Two filling patterns
 - Brightness mode → 680 bunches (1.3nC, 0.3mA),
 - Timing mode \rightarrow 63 bunches (14.4nC, 3.2mA)

Parameter	Value	Unit
Beam energy	6	GeV
Beam current	200	mA
Circumference	1360.4	m
Partition number $J_x/J_y/J_z$	1.51/1.0/1.49	
Horizontal natural emittance	58.4	pm∙rad
Transverse tune (x/y)	107.37/82.43	
Natural chromaticity (x/y)	-214/-133	
Corrected chromaticity (x/y)	+5/+5	
No. of cell / long straight section	48/48	
Length of LSS	6.15	m
Beta function @ mid-LSS (x/y)	8.9/4.1	m
Damping time (x/y/z)	18.3/27.8/18.7	ms
U ₀ per turn (w/o ID)	1.959	MeV
Natural energy spread	8.20×10 ⁻⁴	
RF frequency	166.6/499.8	MHz
RF voltage (swap-out injection)	2.65/0.575	MV
Harmonic number	756	
Bunch length with 3 rd harm. cavity	31.6	mm

- Trapped ions could pose a serious threat to beam stability.
- Ions with mass numbers larger than the "critical mass" A will be trapped, while lighter ions will not! Trapping condition must be fulfilled in both x and y.
- The critical mass will vary along the ring:
 - Trapping condition depends on emittance ratio (coupling factor κ)
 - A given ion may be trapped in some parts of the lattice, but not in others
- Consider brightness mode filling(κ =10%),the minimum critical mass is ~40, so only CO₂⁺ can be trapped.
- No trapping is expected in timing mode

The stability of ions in bunched beam machines

A multi-bunch effect for electron beams, Seminal paper by T. O. Raubenheimer, et al (Linear theory of FBII) FBII has been confirmed experimentally in many facilities.

Characteristics of FII

- The residual can be ionized by the single passage of a bunch train, FBII is a single pass instability.
- Beam bunches' motion couple the ions' motion, the interaction drives transverse oscillations
- FBII can arise in storage rings, linacs, and beam transport line. For ultra low emittance accelerator, the growth rate of this instability is high

Some formulas in used:

The ion line density at the tail of the bunch train:

$$\lambda_i = \sigma_{ion} \frac{P}{kT} N_e n_b$$

The effective ion density is:

$$\rho_{i,eff} = \frac{\lambda_i}{k_y \sigma_y (\sigma_y + \sigma_x)}$$

 k_y represents the dependence on the ion's distribution The transverse distribution of ions is not Gaussian, but the electric field of the ion cloud closely approximates that of a Gaussian distribution with $\sigma_i^2 \approx \sigma_e^2/2$, in this case $k_v \sim 3/2$

If mini-train is introduced in the fill pattern, the diffusion of the ions during the gaps causes a larger size of ion cloud and a lower ion density. In order to evaluate the effects of gaps, an lon-density Reduction Factor is defined as:

$$IRF = \frac{1}{N_{train}} \frac{1}{1 - \exp(-\tau_{gap}/\tau_{ions})}$$

Ion oscillation frequency:

$$f_i = \frac{c}{\pi} \sqrt{\frac{QN_e r_p}{3AL_{sep}\sigma_y(\sigma_x + \sigma_y)}}$$

The FBII arises when the ions are trapped between bunches:

$$4L_{sep} f_i / c \le 1$$

Suppression of beam-ion instability in electron rings with multi-bunch train beam fillings

Models of the Ion Instability:

- 1. Bunch and ion cloud are expressed using one macro particle each. The interaction force between the beam and the ion is linear. $(y << \sigma_v)$
- 2. Bunch and ion cloud are expressed using one macro particle each. The interaction force between the beam and the ion is linear, but the ion oscillation damps with a Q value. $(y < \sigma_v)$
- 3. Bunch and ion cloud are expressed using one macro particle each. The interaction force between the beam and the ion is nonlinear. $(y >> \sigma_y)$
- 4. A bunch is represented using a macro particle, while the ion cloud is represented by many macro particles
- 5. Both the bunch and the ion cloud are represented by many macro particles

Simulations on the Fast-Ion Instability in the International Linear Collider Damping Rings

Rise time prediction

Model 1:Simple linear treatment for small amplitude ($y << \sigma_y$) An initial perturbation \hat{y} increase quasi-exponentially as:

$$y = \hat{y} \frac{1}{2\sqrt{2\pi}(t/\tau_c)^{1/4}} \exp\left(\sqrt{t/\tau_c}\right)$$

with a characteristic time

$$\frac{1}{\tau_c} = \frac{4d_{gas}\sigma_{ion}\beta N_e^{3/2}n_b^2 r_e r_p^{1/2} L_{sep}^{1/2} c}{3\sqrt{3}\gamma \sigma_y^{3/2} (\sigma_y + \sigma_x)^{3/2} A^{1/2}}$$

Model 2:Include ion decoherence and ion frequency spread Oscillation increases exponentially as:

 $y \sim exp(t/\tau_e)$

with an e-folding time of:

$$\frac{1}{\tau_e} \approx \frac{1}{\tau_c} \frac{c}{4\sqrt{2}\pi L_{sep} n_b a_{bt} f_i}$$

Model 3:For very large oscillation amplitudes (y>>oy) a linear growth expected:

$$y \sim \sigma_y \frac{t}{\tau_H}$$
with a time constant:

$$\frac{1}{\tau_H} \approx \frac{1}{\tau_c} \frac{c}{2\pi f_i L_{sep} n_b^{3/2}}$$
log (amplitude)
log (amplitude)
 $1 \sigma_y$
linear regime (linear growth)
 $1 \sigma_y$
linear regime (exponential growth)
H. Fukuma
turns

Single bunch train beam filling

The ion density increases at every bucket. Without density reduction between bunches, the ion density will increases linearly:

During the bucket, the ion density decay exponentially with a decay time order of the ion's oscillation period. For one bunch train, consider density reduction between bunches:

Accelerators	HEPS (nb=680)	HEPS (nb=63)	HEPS (nb=680)	HEPS (nb=63)	HEPS (nb=680)	HEPS (nb=63)
<i>E</i> [GeV]	6	6 6		6		
<i>C</i> [m]	1360.4		1360.4		1360.4	
<i>θ_x/θ_y</i> [m]	4.4/5.9		4.4/5.9		4.4/5.9	
L _{sep} [m]	1.8	21.6	1.8	21.6	1.8	21.6
N _e [10 ¹⁰]	0.83	9.0	0.83	9.0	0.83	9.0
<i>σ_x</i> [μm]	15.3		282.4	334.9	282.4	334.9
σ_y [µm]	5.4		100.4	119.1	100.4	119.1
P [nTorr]	1		1		1	L
$ ho_{\it i, eff}[10^{13}{ m m}^{-3}]$	21.5	21.6	0.063	0.045	0.063	0.045
<i>f_i</i> [MHz]	78.4	78.5	4.2	3.6	4.2	3.6
4L _{sep} f _i /c	2.1	22.6	0.1	1.0	0.1	1.0
τ _c [μs]	0.005	0.005	31.0	51.3	31.0	51.3
τ _e [ms]	0.03	0.03	10.6	14.8	3.4	4.2
τ _H [ms]	0.3	0.09	97.5	41.6	97.5	41.6
CO is assumed. Beta function is the average beta function. $a_{bt}=1$					_{bt} =0.28	

Simulation model of FBII(K. Ohmi):

- > based on weak-strong model
- >e- beam: rigid Gaussian
- > ion: macro particles(The number of ions increase)
- > the interaction between them is based on Bassetti-Erskine formula
- > 2 -D code (lons move only transversely and exist only outside of magnets. The effect of bunch length and the synchrotron motion are not considered)
- > one collision point in the ring.

Kicks between electrons and ions (based on Bassetti-Erskine formula) The velocity change of an ion is:

$$\begin{split} \Delta y_i' + i\Delta x_i' &= -2N_b r_e c \, \frac{m_e}{M_i} f(x_{ie}, y_{ie}) \\ f(x, y) &= -\sqrt{\frac{\pi}{2(\sigma_x^2 - \sigma_y^2)}} \\ & \left[w\left(\frac{x + iy}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}}\right) - \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right) w\left(\frac{x\frac{\sigma_y}{\sigma_x} + iy\frac{\sigma_x}{\sigma_y}}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}}\right) \right] \\ w(z) &= \exp(-z^2)[1 - erf(-iz)] \\ erf(x) &= \frac{2}{\sqrt{\pi}} \int_0^x \exp(-x^2) \, dx \end{split}$$

The ions drift in the space between adjacent bunches linearly:

$$x = x_0 + v_x \frac{L_{sep}}{c} \quad ; \quad y = y_0 + v_y \frac{L_{sep}}{c}$$

Summing for all the ions, the kick to the rigid electron by ion:

$$\Delta y_e' + i\Delta x_e' = \frac{2N_e r_e}{\gamma} \sum_i f(x_{ie}, y_{ie})$$

Beam motion between ionization points can be linked via linear optics:

$$\binom{z_2}{z_2'} = \begin{bmatrix} \sqrt{\frac{\beta_2}{\beta_1}} (\cos\psi + \alpha_1 \sin\psi) & \sqrt{\beta_2\beta_1} \sin\psi \\ \frac{\alpha_1 - \alpha_2}{\sqrt{\beta_2\beta_1}} \cos\psi - \frac{1 + \alpha_1\alpha_2}{\sqrt{\beta_2\beta_1}} \sin\psi & \sqrt{\frac{\beta_1}{\beta_2}} (\cos\psi + \alpha_2 \sin\psi) \end{bmatrix} \binom{z_1}{z_1'}$$

$$z = (x, y)$$

Closed expression for the electrical field of a two-dimensional Gaussian charge

Some results(Brightness mode):

The amplitude of the beam oscillations due to the interaction with the ions versus the bucket index

The proportion of ions survived every turn

Partial pressure of CO: 1nTorr

Some results(Brightness mode):

Case	β.[m]	<i>β</i> _/ [m]	Te[ms]
Casel	4.4	5.9	4.5
Case2	10	15.5	0.77
Case3	3	15.5	1.3
Case4	9	4	6.8

different β function selected for simulation

The vertical action of the bunch centroid:

$$J_y = \frac{1 + \alpha^2}{\beta} y^2 + 2\alpha y y' + \beta (y')^2$$
Partial

Partial pressure of CO: 1nTorr

- •Fast ion instability is still one of critical issues for diffraction limited storage ring.
- •Both analytical calculation and weak-strong simulation show a growth time of around a few millisecond.it shows that this instability is within control with transverse feedback system(need further check).
- •Further simulations need to be performed(filling pattern, mixed gas, feedback system) and strong-strong simulation will be also performed to predict blow-up of beam emittance.

Thank you for your attentions!