

A HIGH REPETITION RATE X-RAY FEL USER FACILITY

-based on a compact wakefield accelerator -

John Power Argonne National Laboratory for the collaboration team (Sasha Zholents)

Future Light Source Workshop

Shanghai, China

March 6, 2018

- **Co-authors** :
 - Yu. Ivanyushenkov, W. Jansma, R. Kustom, R. Lindberg, A. Nassiri, S. Sorsher, N. Strelnikov, K. Suthar, E. Trakhtenberg, I. Vasserman, G, Waldschmidt, J. Xu, A. Zholents (*APS/ANL*),
 - S. Doran, J. Power, (AWA/ANL),
 - S. Baturin (University of Chicago),
 - C. Jing, A. Kanareykin (Euclid Techlabs),
 - D. Shchegolkov, E. Simakov (LANL),
 - P. Piot, W.H. Tan (NIU/Fermilab),
 - H. Perez (Illinois Institute of Technology),
 - Q. Gao, (Tsinghua University, China),
 - G. Ha (Pohang University, Korea)
 - S. Siy, N. Behdad (University of Wisconsin)

High repetition rate multi-user X-ray FEL facility (SRF accelerator and Room Temp undualtors)

- Capable of serving ~2000 scientists/year
- Flexible x-ray beamlines: Tunable pulse length, Seeded, 2 color seeded, SASE

High repetition rate multi-user X-ray FEL facility (SRF accelerator and Room Temp undualtors)

Capable of serving ~2000 scientists/year

Flexible x-ray beamlines: Tunable pulse length, Seeded, 2 color seeded, SASE

High repetition rate multi-user X-ray FEL facility (collinear wakefield accelerator and SC undualtors)

COMPACT

- Low energy spreader
- CWA gradient ~ 100 MV/m
- SC helical undulator

Low Cost

- Low energy spreader
- CWA (passive room-temp accelerator)

Capable of serving ~2000 scientists/year

Flexible x-ray beamlines: Tunable pulse length, Seeded, 2 color seeded, SASE

High repetition rate multi-user FEL facility based on Collinear Wakefield Accelerator

Flexible: each beamline has its own accelerator

- Tunable electron beam energy
- Tunable peak current > 1 kA
- X-ray pulse rep. rate ~ 50 kHz per line

High repetition rate multi-user FEL facility based on Collinear Wakefield Accelerator

Flexible: each beamline has its own accelerator

- Tunable electron beam energy
- Tunable peak current > 1 kA
- X-ray pulse rep. rate ~ 50 kHz per line

High repetition rate multi-user FEL facility based on Collinear Wakefield Accelerator

Flexible: each beamline has its own accelerator

- Tunable electron beam energy
- Tunable peak current > 1 kA
- X-ray pulse rep. rate ~ 50 kHz per line

Collinear Wakefield Accelerator*

Structure WakeField Accelerator (SWFA)

corrugated waveguide 7 ± 0.025 ps Witness bunch Drive bunch 2a

a ~ 1mm, p ~ 0.3 mm, t ~ 0.2 mm, δ ~ 0.15 mm

dielectric waveguide

Electric field map (200-400 GHz)

group velocity = (0.7-0.9)c

- *) G. A. Voss and T. Weiland, DESY M-82-10, 1982; K. L. F. Bane, P. Chen, P. B. Wilson, SLAC-PUB-3662, 1985;
 - W. Gai et al. Phys. Rev. Lett. 61, 2756,1988.

Potential of collinear wakefield accelerators

Low cost device (likely)

High field gradients

Up to ~ 200 MV/m

High wall plug power efficiency
High bunch repetition rate

Up to ~ 50 kHz (low energy SRF linac supplies drive and witness bunches)

Main CWA accelerator component

COLLINEAR WAKEFIELD ACCELERATION FUNDAMENTALS

- Acceleration Gradient and Transformer Ratio
 - Drive Bunch Energy Utilization
- Efficiency & Cooling
- Beam Stability

The Wakefield Theorem and the Transformer Ratio

Collinear Dielectric Wakefield Acceleration

Transformer ratio $R = \frac{\max|E_+|}{\max|E_-|}$

Wakefield Theorem: R<2 for symmetric bunches

Tradeoff:

Acceleration Gradient (E₊) and Transformer ratio (R)*

*) J. Power, Presentation at 2011 Argonne Workshop on Dielectric Wakefield Accelerator; S. Baturin, A. Zholents, PRAB, 061302 (2017).

13

Tradeoff:

Acceleration Gradient (E₊) and Transformer ratio (R)*

*) J. Power, Presentation at 2011 Argonne Workshop on Dielectric Wakefield Accelerator; S. Baturin, A. Zholents, PRAB, 061302 (2017).

High energy gain by witness electron bunch

Drive bunch utilization

1)

- Transformer Ratio (R = 5)
- Extract maximum energy from drive bunch, (η = 80%)

Efficiency and Power Management

Efficiency and Power Management

Beam Stability

Transverse wakefields: $W_x \sim 1/(ka^4)$ (to be compared with $W_z \sim 1/a^2$)

Beam breakup instability arises from continuous exposure of tail electrons to transverse wake field*.

Snapshots of a single bunch traversing a SLAC structure

*) A.Chao, "Physics of collective beam instabilities in high energy accelerators", New York: Wiley.

Balakin-Novokhatsky-Smirnov (BNS) damping of BBU

- Use FODO channel to guide the drive bunch in CWA
- Produce "chirp" in the betatron tune along the drive bunch using the energy "chirp", and
- Force tail to oscillate out of phase from the head, thus mitigating the impact of transverse wake fields.

Initial energy chirp ~15 % (peakto-peak)

*) Shchegolkov, Simakov, Zholents, IEEE Trans. on Nuclear Sci., vol. 63, (2016)804. Particles of different energies have different oscillation periods in the FODO lattice 19

A Stability Recipe for CWA*

Ingredient 1: Adaptive focusing

Change the quadrupole length according to

$$L = L_0 \sqrt{1 - \alpha z},$$

with beam deceleration

$$\gamma(s,z) = \gamma_0 \left[1 - \alpha z\right]$$

and keep the magnetic field gradient at a maximum

*) Baturin, Zholents, "Stability condition for the drive bunch in a collinear wakefield accelerator", <u>arXiv:1709.08583v2</u>

A Stability Recipe for CWA*

cont't

Ingredient 2: Adaptive energy chirp

Keep <u>relative</u> energy chirp constant

 $\frac{\Delta \gamma}{\gamma_Z} = \text{const}$

Accomplish it by employing the longitudinal wakefield and special peak current distribution in the drive bunch.

Small quadratic compo-ere nent added here

Demonstration of the adaptive energy chirp using *elegant* code

A Stability Recipe for CWA*

cont't

Ingredient 3: Select energy chirp within the stability "window"

 Φ_1 is the betatron phase advance of the head electron in FD focusing cell

BUNCH SHAPING

- 1. Manipulating wakefields via bunch shaping
- 2. Methods of bunch shaping
 - Emittance Exchange
 - photocathode laser-based
 - self-wakefields,

Q: Why do we want to control the bunch shape?

A: Drive bunch shape controls the drive bunch wakefield to control transformer ratio **R** and acceleration gradient **E**_z.

Q: Why do we want to control the bunch shape?

A: Witness bunch shape controls the witness bunch wakefield to reduce its correlated energy spread.

Emittance Exchange Beamline Converts EXPERIMENT Transverse Shaping to Longitudinal Shaping

AWA/ANL

Emittance Exchange Beamline Converts EXPERIMENT Transverse Shaping to Longitudinal Shaping

AWA/ANL

Masks (~100 μ m of W)

YAG

Problematic at a high bunch repetition rate

Problematic at a high bunch repetition rate

Drive bunch shaping using photocathode laser *)

*) Cornacchia, Di Mitri, Penco, Zholents, *Phys. Rev. ST-AB*, 9, 120701(2006); Penco, Danailov, Demidovich, Allaria, et al., Phys. Rev. Lett, 112, 044801 (2014).

Drive bunch shaping using self-wakefields*

*) G. Andonian, Advanced Accelerator Workshop - AAC 2014, San Jose, (2014)

Make it more precise using Double EEX*)

Under installation at the Argonne Wakefield Accelerator (AWA) facility

Bunch shaping using the entire accelerator

PROTOTYPING AND EXPERIMENTING

Accelerator module

Quadrupole wiggler: array of focusing (F) and defocusing (D) quadrupoles

High gradient hybrid quad

- Bore radius = 1.5 mm.
- Peak gradient = 0.96 T/mm.
- Sub-micron precision in the magnetic center position.
- Length = 40 mm.

Vacuum

chamber

- Weight = 2.5 kg.
- Magnetic force between top and bottom parts = 30.5 kg.

NdFeB

Quadrupole wiggler

Requirement: quad-to-quad misalignment tolerance \leq 1 μ m

Demonstrated: sub-micrometer accuracy in determination of the magnetic center

Prototype quadrupole on the bench for magnetic measurements

Vacuum chamber

Power loss in Cu 20 W/cm

Vacuum chamber

cont'd

Making the waveguide with small corrugations: work in progress

Cross-sectional profile through a raised tooth marked by the blue line in the above photo.

Cross-sectional profile through a groove.

Scaled up experiment at the Argonne Wakefield Acceleratorr (AWA) Facility: Tolerance Study

FREE-ELECTRON LASER

Small period undulator

... allows obtaining the same radiation wavelength using the electron beam with less energy (shorter and less expensive Linac)

$$\lambda_{x-ray} = \frac{\lambda_{undulator}}{2\gamma^2} \left(1 + \frac{K^2}{2}\right)$$

A promising technology is a helical superconducting undulator

Innovative concept of multiple helical undulators sharing one cryostat

Supplemental helical quadrupole winding will ensure a superior FEL performance

Expected period ~ 10 mm (for 2 mm vacuum bore)

FEL simulations (illustration)

Conclusion

- Making progress towards a High Repetition Rate, Multiuser, X-ray FEL Facility.
- Collinear wakefield accelerator
 - Limiting factors for accelerating gradients are defined
 - High accelerator efficiency is favored over the high acceleration gradient
 - Accelerator design mitigating BBU of the drive bunch has been proposed
- Beam shaping and obtaining high transformer ratio has been demonstrated
- Prototyping of the accelerator components is quickly progressing
- Small period superconducting undulators are considered