

The European Synchrotron

Partial coherence in undulator beamlines at ultra-low emittance storage rings

Manuel Sanchez del Rio

1 FLS2018 Shanghai 20170408 srio@esrf.eu

MOTIVATION:

Fully characterize and calculate coherence properties of EBS beamlines.

- Introduction (with a bit of theory)
- Methodology: Coherent mode decomposition.
 - **Applications**
 - **ESRF: comparison** $H\beta$ -L β vs new EBS
 - ID16A

ESRF AND EBS LATTICES

EBS – ESRF U18 2m @ 8 keV L=2m observed at 30m

Low Beta U18

High Beta U18

EBS U18

Wofry Wavefront Propagation Wofry Beamline Elements S Wofry Tools **SRW Light Sources SRW Optical Elements** (\mathbf{x}) SRW Tools SRW Wofry WISE ~ WISE Tools W WISE Wofry COMSYL

The European Synchrotron

The European Synchrotron ESRF

Wofry Wavefront Propagation Wofry Beamline Elements

Wofry Wavefront Propagation Wofry Beamline Elements

ESRF

The European Synchrotron

 \otimes

Wofry Tools

$$E'(\mathbf{r}) = \int h(\mathbf{r}, \mathbf{r}', \omega) E(\mathbf{r}', \omega) d\mathbf{r}'$$

ESRF

Statistically distributed bunches

Order of 10⁹ electrons per bunch

$$f(\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{\gamma}, \boldsymbol{z}) = C \cdot \exp(-\mathbf{u}^{\mathrm{T}} \Sigma^{-1} \boldsymbol{u})$$

Phase space vector $\boldsymbol{u} = (x, \theta_x, y, \theta_y, \gamma, z)$ 6x6 covariance matrix Σ :

SINGLE ELECTRON PHOTON EMISSION (ZERO EMITTANCE)

$$\frac{d^2I}{d\omega d\Omega} = \frac{eI}{8\pi^2 c\epsilon_0 h} 10^{-9} \left| \int_{-\infty}^{\infty} \left[\frac{n \times \left[(n-\beta) \times \dot{\beta} \right]}{(1-\beta \cdot n)^2} + \frac{c}{\gamma^2 R} \frac{(n-\beta)}{(1-\beta \cdot n)^2} \right] e^{i\omega(t'+R(t')/c)} dt' \right|^2 + \frac{c}{\gamma^2 R} \frac{(n-\beta)}{(1-\beta \cdot n)^2} \left[\frac{e^{i\omega(t'+R(t')/c)}}{(1-\beta \cdot n)^2} + \frac{c}{\gamma^2 R} \frac{(n-\beta)}{(1-\beta \cdot n)^2} \right] dt'$$

beam statistics **matrix** statistics of the emission

Kim, K.-J. Proc. SPIE 0582 (1986)

17

ESRF The European Synchrotron

THEORY OF PARTIAL COHERENCE

Mutual coherence function $\Gamma(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) = \langle E^*(\mathbf{r}_1, t_1)E(\mathbf{r}_2, t_2) \rangle_e$ $\left(\Delta_{\mathbf{r}_1} - \frac{1}{c^2} \frac{\partial^2}{\partial t_1^2} \right) \left(\Delta_{\mathbf{r}_2} - \frac{1}{c^2} \frac{\partial^2}{\partial t_2^2} \right) \Gamma(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) = (4\pi)^2 \Gamma_Q(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2)$ $\Gamma_Q(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) = \langle Q^*(\mathbf{r}_1, t_1)Q(\mathbf{r}_2, t_2) \rangle_e$ $Q(\mathbf{r}, t) = -\left(\frac{1}{\epsilon_0} \nabla \rho + \mu_0 \frac{\partial J}{\partial t}\right)$

Mutual coherence function $\Gamma(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) = \langle E^*(\mathbf{r}_1, t_1)E(\mathbf{r}_2, t_2) \rangle_e$ $\left(\Delta_{\mathbf{r}_1} - \frac{1}{c^2} \frac{\partial^2}{\partial t_1^2} \right) \left(\Delta_{\mathbf{r}_2} - \frac{1}{c^2} \frac{\partial^2}{\partial t_2^2} \right) \Gamma(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) = (4\pi)^2 \Gamma_Q(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2)$ $\Gamma_Q(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) = \langle Q^*(\mathbf{r}_1, t_1)Q(\mathbf{r}_2, t_2) \rangle_e$ $Q(\mathbf{r}, t) = -\left(\frac{1}{\epsilon_0} \nabla \rho + \mu_0 \frac{\partial J}{\partial t} \right)$ *Wide-sense* stationary:

Mutual coherence function $\Gamma(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) = \langle E^*(\mathbf{r}_1, t_1)E(\mathbf{r}_2, t_2) \rangle_e$

$$\begin{pmatrix} \Delta_{r_1} - \frac{1}{c^2} \frac{\partial^2}{\partial t_1^2} \end{pmatrix} \left(\Delta_{r_2} - \frac{1}{c^2} \frac{\partial^2}{\partial t_2^2} \right) \Gamma(r_1, t_1, r_2, t_2) = (4\pi)^2 \Gamma_Q(r_1, t_1, r_2, t_2) \\ \Gamma_Q(r_1, t_1, r_2, t_2) = \langle Q^*(r_1, t_1) Q(r_2, t_2) \rangle_e \\ Q(r, t) = - \left(\frac{1}{\epsilon_0} \nabla \rho + \mu_0 \frac{\partial J}{\partial t} \right)$$
Wide-sense stationary:

$$\langle E^*(\boldsymbol{r}_1,t_1)E(\boldsymbol{r}_2,t_2)\rangle_e = \langle E^*(\boldsymbol{r}_1,0)E(\boldsymbol{r}_2,t_2-t_1)\rangle_e$$

Mutual coherence function $\Gamma(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) = \langle E^*(\mathbf{r}_1, t_1)E(\mathbf{r}_2, t_2) \rangle_e$

$$\begin{pmatrix} \Delta_{r_1} - \frac{1}{c^2} \frac{\partial^2}{\partial t_1^2} \end{pmatrix} \left(\Delta_{r_2} - \frac{1}{c^2} \frac{\partial^2}{\partial t_2^2} \right) \Gamma(r_1, t_1, r_2, t_2) = (4\pi)^2 \Gamma_Q(r_1, t_1, r_2, t_2) \\ \Gamma_Q(r_1, t_1, r_2, t_2) = \langle Q^*(r_1, t_1) Q(r_2, t_2) \rangle_e \\ Q(r, t) = - \begin{pmatrix} \frac{1}{\epsilon_0} \nabla \rho + \mu_0 \frac{\partial J}{\partial t} \end{pmatrix}$$

Wide-sense stationary:

$$\langle E^*(\boldsymbol{r}_1, t_1) E(\boldsymbol{r}_2, t_2) \rangle_e = \langle E^*(\boldsymbol{r}_1, 0) E(\boldsymbol{r}_2, t_2 - t_1) \rangle_e$$

Storage ring emission is wide-sense stationary if

- the bunch length is long enough
- the radiation frequency is large enough
- the monochromator resolution is not too high

Geloni, G., et al. Nucl. Inst. and Meth. in Physics 588 463-493 (2008)

$\langle E^*(\boldsymbol{r}_1, t_1) E(\boldsymbol{r}_2, t_2) \rangle_e \xleftarrow{\mathsf{FT}} \langle E^*(\boldsymbol{r}_1, \omega_1) E(\boldsymbol{r}_2, \omega_2) \rangle_e$

Frequency representation:

$\langle E^*(\boldsymbol{r}_1, t_1) E(\boldsymbol{r}_2, t_2) \rangle_e \xleftarrow{\mathsf{FT}} \langle E^*(\boldsymbol{r}_1, \omega_1) E(\boldsymbol{r}_2, \omega_2) \rangle_e$ In consequence:

23 FLS2018 Shanghai 20170408 srio@esrf.eu

Frequency representation:

$\begin{array}{c} \langle E^*(\boldsymbol{r}_1, \boldsymbol{t}_1) E(\boldsymbol{r}_2, \boldsymbol{t}_2) \rangle_e & \longleftrightarrow \\ \mathsf{FT} & \langle E^*(\boldsymbol{r}_1, \omega_1) E(\boldsymbol{r}_2, \omega_2) \rangle_e \\ \text{In consequence:} \\ & \langle E^*(\boldsymbol{r}_1, \omega_1) E(\boldsymbol{r}_2, \omega_2) \rangle_e \end{array}$

Frequency representation:

 $\langle E^*(\boldsymbol{r}_1,t_1)E(\boldsymbol{r}_2,t_2)\rangle_e \xleftarrow{} \langle E^*(\boldsymbol{r}_1,\omega_1)E(\boldsymbol{r}_2,\omega_2)\rangle_e$ In consequence: $\langle E^*(\boldsymbol{r}_1,\omega_1)E(\boldsymbol{r}_2,\omega_2)\rangle_{\rho}$

$$\begin{array}{c} \langle E^*(\boldsymbol{r}_1, \boldsymbol{t}_1) E(\boldsymbol{r}_2, \boldsymbol{t}_2) \rangle_e & \longleftrightarrow \\ \mathsf{FT} & \langle E^*(\boldsymbol{r}_1, \omega_1) E(\boldsymbol{r}_2, \omega_2) \rangle_e \\ \text{In consequence:} \\ & \langle E^*(\boldsymbol{r}_1, \omega_1) E(\boldsymbol{r}_2, \omega_2) \rangle_e & \longrightarrow \langle E^*(\boldsymbol{r}_1, \omega) E(\boldsymbol{r}_2, \omega) \rangle_e \end{array}$$

$$\langle E^*(\boldsymbol{r}_1, \boldsymbol{t}_1) E(\boldsymbol{r}_2, \boldsymbol{t}_2) \rangle_e \xleftarrow{\mathsf{FT}} \langle E^*(\boldsymbol{r}_1, \omega_1) E(\boldsymbol{r}_2, \omega_2) \rangle_e$$

In consequence:
$$\langle E^*(\boldsymbol{r}_1, \omega_1) E(\boldsymbol{r}_2, \omega_2) \rangle_e \longrightarrow \langle E^*(\boldsymbol{r}_1, \omega) E(\boldsymbol{r}_2, \omega) \rangle_e$$

much simpler

$$\langle E^{*}(\boldsymbol{r}_{1},t_{1})E(\boldsymbol{r}_{2},t_{2})\rangle_{e} \xleftarrow{} \langle E^{*}(\boldsymbol{r}_{1},\omega_{1})E(\boldsymbol{r}_{2},\omega_{2})\rangle_{e}$$

In consequence:
$$\langle E^{*}(\boldsymbol{r}_{1},\omega_{1})E(\boldsymbol{r}_{2},\omega_{2})\rangle_{e} \longrightarrow \langle E^{*}(\boldsymbol{r}_{1},\omega)E(\boldsymbol{r}_{2},\omega)\rangle_{e}$$

much simpler

Frequency representation:

$$\langle E^*(\boldsymbol{r}_1, \boldsymbol{t}_1) E(\boldsymbol{r}_2, \boldsymbol{t}_2) \rangle_e \xleftarrow{\mathsf{FT}} \langle E^*(\boldsymbol{r}_1, \omega_1) E(\boldsymbol{r}_2, \omega_2) \rangle_e$$

n consequence:
$$\langle E^*(\boldsymbol{r}_1, \omega_1) E(\boldsymbol{r}_2, \omega_2) \rangle_e \longrightarrow \langle E^*(\boldsymbol{r}_1, \omega) E(\boldsymbol{r}_2, \omega) \rangle_e$$

Cross spectral density (CSD) [everything] much simpler

$$W(\boldsymbol{r}_1, \boldsymbol{r}_2, \omega) = \langle E_1^*(\boldsymbol{r}_1, \omega) E_2(\boldsymbol{r}_2, \omega) \rangle_e$$

Spectral density (kind of "intensity" / "energy")

$$S(\mathbf{r},\omega) = W(\mathbf{r},\mathbf{r},\omega)$$

Spectral degree of coherence

$$\mu(\boldsymbol{r}_1, \boldsymbol{r}_2, \omega) = \frac{W(\boldsymbol{r}_1, \boldsymbol{r}_2, \omega)}{\sqrt{S(\boldsymbol{r}_1, \omega)S(\boldsymbol{r}_2, \omega)}}$$

(incoherent) $0 \le |\mu(\mathbf{r}_1, \mathbf{r}_2, \omega)| \le 1$ (comp coherent)

$W(r_1, r_2, \omega)$ four-dimensional for fixed frequency at a distance z.

Propagation: $W'(r_1, r_2, \omega) = \int W(r'_1, r'_2, \omega) h^*(r_1, r'_1, \omega) h(r_2, r'_2, \omega) dr'_1 dr'_2$

$W(r_1, r_2, \omega)$ four-dimensional for fixed frequency at a distance z.

Propagation: $W'(r_1, r_2, \omega) = \int W(r'_1, r'_2, \omega) h^*(r_1, r'_1, \omega) h(r_2, r'_2, \omega) dr'_1 dr'_2$

 $N_x, N_y \in [100, 1000].$

```
Memory size ~ N_x^2 N_y^2
```

```
100^4 = 10^8 to 1000^4 = 10^{12}
```

complex numbers (16 bytes), i.e. at least Gb to Tb.

Computation of W takes a lot of time, i.e. calculation of 10^8 to 10^{12} elements.

Propagation of W takes a lot of time for calculating 10^8 to 10^{12} 4d integrals.

$$W(\mathbf{r}_1, \mathbf{r}_2, \omega) = \sum_n^\infty \lambda_n(\omega) \phi_n^*(\mathbf{r}_1, \omega) \phi_n(\mathbf{r}_2, \omega)$$

Trade 4d spatial dependencies

 $\phi_n(\pmb{r},\pmb{\omega})$ coherent mode

to sum of 2d at fixed frequency.

 $\lambda_n(\omega)$ eigenvalue (mode intensities)

$$W(\mathbf{r}_1, \mathbf{r}_2, \omega) = \sum_n^\infty \lambda_n(\omega) \phi_n^*(\mathbf{r}_1, \omega) \phi_n(\mathbf{r}_2, \omega)$$

Trade 4d spatial dependencies

 $\phi_n(\mathbf{r}, \boldsymbol{\omega})$ coherent mode to $\lambda_n(\omega)$ eigenvalue (mode intensities)

to sum of 2d at fixed frequency.

• Orthonormal (uncoupled in L_2 sense)

- Fully coherent if and only if one coherent mode
- $d_n(\omega) = \frac{\lambda_n(\omega)}{\sum_j \lambda_j(\omega)}$ occupation (mode distribution or spectrum)
- Maximizing spectral density (compact, controlled)

$$W(\mathbf{r}_1, \mathbf{r}_2, \omega) = \sum_n^\infty \lambda_n(\omega) \phi_n^*(\mathbf{r}_1, \omega) \phi_n(\mathbf{r}_2, \omega)$$

Trade 4d spatial dependencies

 $\phi_n(\pmb{r},\pmb{\omega})$ coherent mode

to **sum of 2d** at fixed frequency.

 $\lambda_n(\omega)$ eigenvalue (mode intensities)

Some coherent mode properties:

- Orthonormal (uncoupled in L₂ sense)
- Fully coherent if and only if one coherent mode
- $d_n(\omega) = \frac{\lambda_n(\omega)}{\sum_j \lambda_j(\omega)}$ occupation (mode distribution or spectrum)
- Maximizing spectral density (compact, controlled)

$$W(\mathbf{r}_1, \mathbf{r}_2, \omega) = \sum_n^\infty \lambda_n(\omega) \phi_n^*(\mathbf{r}_1, \omega) \phi_n(\mathbf{r}_2, \omega)$$

Trade 4d spatial dependencies

 $\phi_n(\pmb{r},\pmb{\omega})$ coherent mode

to **sum of 2d** at fixed frequency.

 $\lambda_n(\omega)$ eigenvalue (mode intensities)

Some coherent mode properties:

- Orthonormal (uncoupled in L₂ sense)
- Fully coherent if and only if one coherent mode
- $d_n(\omega) = \frac{\lambda_n(\omega)}{\sum_j \lambda_j(\omega)}$ occupation (mode distribution or spectrum)
- Maximizing spectral density (compact, controlled)

Each mode propagate like a wavefront so one can build the CSD at any point by propagating the modes to that point.

COMSYL

The coherent modes are the solution of the homogenous Fredholm equation of second kind:

$$A_W[\phi_n] = \lambda_n \phi_n$$

i.e. an eigenvalue problem for:

$$A_W[f](\boldsymbol{r}_2) = \int W(\boldsymbol{r}_1, \boldsymbol{r}_2, \omega) f(\boldsymbol{r}_1) d\boldsymbol{r}_1$$

COMSYL

The coherent modes are the solution of the homogenous Fredholm equation of second kind:

$$A_W[\phi_n] = \lambda_n \phi_n$$

i.e. an eigenvalue problem for:

$$A_W[f](\boldsymbol{r}_2) = \int W(\boldsymbol{r}_1, \boldsymbol{r}_2, \omega) f(\boldsymbol{r}_1) d\boldsymbol{r}_1$$

Coherent modes of X-ray beams emitted by undulators in new storage rings Mark Glass and Manuel Sanchez del Rio EPL, 119 3 (2017) 34004

DOI: <u>https://doi.org/10.1209/0295-5075/119/34004</u> Free preprint: <u>https://arxiv.org/abs/1706.04393</u>

See the COMSYL Wiki pages <u>https://github.com/mark-glass/comsyl/wiki</u> for more information including the full thesis manuscript.

COMSYL

The coherent modes are the solution of the homogenous Fredholm equation of second kind:

$$A_W[\phi_n] = \lambda_n \phi_n$$

i.e. an eigenvalue problem for:

$$A_W[f](\boldsymbol{r}_2) = \int W(\boldsymbol{r}_1, \boldsymbol{r}_2, \omega) f(\boldsymbol{r}_1) d\boldsymbol{r}_1$$

Solved by COMSYL (Coherent modes for synchrotrons) Open-source at:

https://github.com/mark-glass/comsyl

Coherent modes of X-ray beams emitted by undulators in new storage rings Mark Glass and Manuel Sanchez del Rio EPL, 119 3 (2017) 34004

DOI: <u>https://doi.org/10.1209/0295-5075/119/34004</u> Free preprint: <u>https://arxiv.org/abs/1706.04393</u>

See the COMSYL Wiki pages <u>https://github.com/mark-glass/comsyl/wiki</u> for more information including the full thesis manuscript.

STRATEGY Calculate W(r_1, r_2, ω) **SRW** (approximation: brightness convolution) Coherent mode decomposition (gives N_M modes) Propagate $W(r_1, r_2, \omega)$ Propagate modes along the beamline: $W(\mathbf{r}_1, \mathbf{r}_2, \omega) \rightarrow W'(\mathbf{r}_1, \mathbf{r}_2, \omega)$ Rediagonalize $W'(\mathbf{r}_1, \mathbf{r}_2, \omega)$

STRATEGY

COMPARISON EBS VS CURRENT LATTICE: MODE SPECTRUM

 $\lambda_n(\omega)$ eigenvalue (mode intensities) $d_n(\omega) = \frac{\lambda_n(\omega)}{\sum_j \lambda_j(\omega)}$ occupation (mode distribution)

 d_0 is the Coherent fraction

COMPARISON EBS VS CURRENT LATTICE: MODE SPECTRUM

$\lambda_n(\omega)$ eigenvalue (mode intensities) $d_n(\omega) = \frac{\lambda_n(\omega)}{\sum_j \lambda_j(\omega)}$ occupation (mode distribution)

 d_0 is the Coherent fraction

COMPARISON EBS VS CURRENT LATTICE (IMAGING BEAMLINE)

A typical "coherence beamline": 2m U18 E₀=8keV

At S₃ after second diagonalization:

COMPARISON EBS VS CURRENT LATTICE (IMAGING BEAMLINE)

A typical "coherence beamline": 2m U18 E₀=8keV

At S₃ after second diagonalization:

The European Synchrotron

ESRF

47

COMPARISON EBS VS CURRENT LATTICE (IMAGING BEAMLINE)

A typical "coherence beamline": 2m U18 E₀=8keV

At S₃ after second diagonalization:

The European Synchrotron

ESRF

FLS2018 Shanghai 20170408 srio@esrf.eu

1) Extreme demagnification

1) Extreme demagnification

Plane	Source	Multilayer	Slit	KB(V)	KB(H)	focal plane
D	0.0	28.3	40.0	184.90	184.95	185.0
Η		2.42:1			2899:1	
V				1849:1		

1) Extreme demagnification

Plane	Source	Multilayer	Slit	KB(V)	KB(H)	focal plane
D	0.0	28.3	40.0	184.90	184.95	185.0
Η		2.42:1			2899:1	
V				1849:1		

	Н	V
ESRF Source	977.2 μm	$9.6 \ \mu m$
ESRF Slit Plane	$403.8 \ \mu m$	
ESRF Focal Plane	$139.3 \ nm$	$5.2 \ nm$
EBS Source	$71.3 \ \mu m$	$10.0 \ \mu m$
EBS Slit Plane	$29.4 \ \mu m$	
EBS Focal Plane	$10.2 \ nm$	$5.4 \ nm$

1) Extreme demagnification

Plane	Source	Multilayer	Slit	KB(V)	KB(H)	focal plane
D	0.0	28.3	40.0	184.90	184.95	185.0
Η		2.42:1			2899:1	
V				1849:1		

	Н	V
ESRF Source	977.2 μm	$9.6 \ \mu m$
ESRF Slit Plane	$403.8 \ \mu m$	
ESRF Focal Plane	$139.3 \ nm$	5.2 nm
EBS Source	$71.3 \ \mu m$	$10.0 \ \mu m$
EBS Slit Plane	$29.4 \ \mu m$	
EBS Focal Plane	$10.2 \ nm$	$5.4 \ nm$

2) Diffraction limited (mirror clipping)

1) Extreme demagnification

Plane	Source	Multilayer	Slit	KB(V)	KB(H)	focal plane
D	0.0	28.3	40.0	184.90	184.95	185.0
Η		2.42:1			2899:1	
V				1849:1		

	Н	V
ESRF Source	977.2 μm	$9.6 \ \mu m$
ESRF Slit Plane	$403.8 \ \mu m$	
ESRF Focal Plane	$139.3 \ nm$	$5.2 \ nm$
EBS Source	$71.3 \ \mu m$	$10.0 \ \mu m$
EBS Slit Plane	$29.4 \ \mu m$	
EBS Focal Plane	$10.2 \ nm$	$5.4 \ nm$

2) Diffraction limited (mirror clipping)

J. C. da Silva et al.: https://doi.org/10.1364/OPTICA.4.000492

57 FLS2018 Shanghai 20170408 srio@esrf.eu

RAY TRACING

FLS2018 Shanghai 20170408 srio@esrf.eu 58

Storage ring	CF^C	CF^E	CFEA	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

Coherent fraction values (in %) calculated as occupation of the first coherent mode using the COMSYL software (CF^C), and compared with approximated expressions CF^E , CF^{EA} and CF^K (see text) for an undulator U18 L=1.4m at 17.225 keV.

Storage ring	CF^C	CF^E	CFEA	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
Kim				
Elleaum e				

Coherent fraction values (in %) calculated as occupation of the first coherent mode using the COMSYL software (CF^C), and compared with approximated expressions CF^E , CF^{EA} and CF^K (see text) for an undulator U18 L=1.4m at 17.225 keV.

Storage ring	CF^C	CF^E	CFEA	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
Kim				
Elleaum e		$\frac{2.740}{4\pi}\sqrt{\lambda L}$		

Storage ring	CF^C	CF^E	CF ^{EA}	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
Kim				$CF^{K} = \frac{\left(\frac{\lambda}{4\pi}\right)^{2}}{\sqrt{\left(\sigma_{x}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{y}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)}}$
Elleaum e		$\frac{2.740}{4\pi}\sqrt{\lambda L}$		

Storage ring	CF^C	CF^E	CFEA	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
Kim				$CF^{K} = \frac{\left(\frac{\lambda}{4\pi}\right)^{2}}{\sqrt{\left(\sigma_{x}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{y}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)}}$
Elleaum e		$\frac{2.740}{4\pi}\sqrt{\lambda L}$		$CF^{EA} = \frac{\left(\frac{\lambda}{2\pi}\right)^2}{\sqrt{\left(\sigma_x^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_y^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)}}$

Storage ring	CF^C	CF^E	CFEA	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
Kim		$\sigma_r = rac{1}{4\pi}\sqrt{2\lambda L}$		$CF^{K} = \frac{\left(\frac{\lambda}{4\pi}\right)^{2}}{\sqrt{\left(\sigma_{x}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{y}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)}}$
Elleaum e		$\frac{2.740}{4\pi}\sqrt{\lambda L}$		$CF^{EA} = \frac{\left(\frac{\lambda}{2\pi}\right)^2}{\sqrt{\left(\sigma_x^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_y^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)}}$

https://arxiv.org/abs/1801.07542

Storage ring	CF^C	CF^E	CF ^{EA}	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
Kim		$\sigma_r = rac{1}{4\pi}\sqrt{2\lambda L}$		$CF^{K} = \frac{\left(\frac{\lambda}{4\pi}\right)^{2}}{\sqrt{\left(\sigma_{x}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{y}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)}}$
Elleaum e		$\frac{2.740}{4\pi}\sqrt{\lambda L}$		$CF^{EA} = \frac{\left(\frac{\lambda}{2\pi}\right)^2}{\sqrt{\left(\sigma_x^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_y^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)}}$

https://arxiv.org/abs/1801.07542

Storage ring	CF^C	CF^E	CF ^{EA}	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
		σ_r		
Kim		$\sigma_r = \frac{1}{4\pi} \sqrt{2\lambda L}$		$CF^{K} = \frac{\left(\frac{\lambda}{4\pi}\right)^{2}}{\sqrt{\left(\sigma_{x}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{y}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)}}$
Elleaum e		$\frac{2.740}{4\pi}\sqrt{\lambda L}$		$CF^{EA} = \frac{\left(\frac{\lambda}{2\pi}\right)^2}{\sqrt{\left(\sigma_x^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_y^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)}}$

https://arxiv.org/abs/1801.07542

Storage ring	CF^C	CF^E	CF ^{EA}	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
	$\sigma_{r'}$	σ_r		
Kim		$\sigma_r = rac{1}{4\pi}\sqrt{2\lambda L}$		$CF^{K} = \frac{\left(\frac{\lambda}{4\pi}\right)^{2}}{\sqrt{\left(\sigma_{x}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{y}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)}}$
Elleaum e		$\frac{2.740}{4\pi}\sqrt{\lambda L}$		$CF^{EA} = \frac{\left(\frac{\lambda}{2\pi}\right)^2}{\sqrt{\left(\sigma_x^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_y^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)}}$

https://arxiv.org/abs/1801.07542

Storage ring	CF^C	CF^E	CF ^{EA}	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
	$\sigma_{r'}$	σ_r	$\sigma_r \sigma_{r'}$	
Kim		$\sigma_r = rac{1}{4\pi}\sqrt{2\lambda L}$		$CF^{K} = \frac{\left(\frac{\lambda}{4\pi}\right)^{2}}{\sqrt{\left(\sigma_{x}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{y}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)}}$
Elleaum e		$\frac{2.740}{4\pi}\sqrt{\lambda L}$		$CF^{EA} = \frac{\left(\frac{\lambda}{2\pi}\right)^2}{\sqrt{\left(\sigma_x^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_y^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)}}$

https://arxiv.org/abs/1801.07542

Storage ring	CF^C	CF^E	CF ^{EA}	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
	$\sigma_{r'}$	σ_r	$\sigma_r \sigma_{r'}$	
Kim		1		$\left(\frac{\lambda}{2}\right)^2$
		$\sigma_r = \frac{1}{4\pi} \sqrt{2\lambda L}$		$CF^{K} = \frac{(4\pi)}{\sqrt{\left(\sigma_{x}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{y}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)}}$
Elleaum e		$\frac{2.740}{4\pi}\sqrt{\lambda L}$		$CF^{EA} = \frac{\left(\frac{\lambda}{2\pi}\right)^2}{\sqrt{\left(\sigma_x^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_y^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)}}$

https://arxiv.org/abs/1801.07542

Storage ring	CF^C	CF^E	CFEA	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
	$\sigma_{r'}$	σ_r	$\sigma_r \sigma_{r'}$	
Kim		$\sigma_r = rac{1}{4\pi}\sqrt{2\lambda L}$		$CF^{K} = \frac{\left(\frac{\lambda}{4\pi}\right)^{2}}{\sqrt{\left(\sigma_{x}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{y}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)}}$
Elleaum e		$\frac{2.740}{4\pi}\sqrt{\lambda L}$	$\frac{1.89\lambda}{4\pi}\sim\frac{\lambda}{2\pi}$	$CF^{EA} = \frac{\left(\frac{\lambda}{2\pi}\right)^2}{\sqrt{\left(\sigma_x^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_y^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)}}$

https://arxiv.org/abs/1801.07542

Storage ring	CF^C	CF^E	CF ^{EA}	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
	$\sigma_{r'}$	σ_r	$\sigma_r \sigma_{r'}$	
Kim		$\sigma_r = rac{1}{4\pi}\sqrt{2\lambda L}$	$+\frac{\lambda}{4\pi}$	$CF^{K} = \frac{\left(\frac{\lambda}{4\pi}\right)^{2}}{\sqrt{\left(\sigma_{x}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{y}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)}}$
Elleaum e		$\frac{2.740}{4\pi}\sqrt{\lambda L}$	$\frac{1.89\lambda}{4\pi}\sim\frac{\lambda}{2\pi}$	$CF^{EA} = \frac{\left(\frac{\lambda}{2\pi}\right)^2}{\sqrt{\left(\sigma_x^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_y^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)}}$

https://arxiv.org/abs/1801.07542

Storage ring	CF^C	CF^E	CF ^{EA}	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
	$\sigma_{r'}$	σ_r	$\sigma_r \sigma_{r'}$	
Kim		$\sigma_r = rac{1}{4\pi}\sqrt{2\lambda L}$	$\frac{\lambda}{4\pi}$	$CF^{K} = \frac{\left(\frac{\lambda}{4\pi}\right)^{2}}{\sqrt{\left(\sigma_{x}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{y}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)}}$
Elleaum e		$\frac{2.740}{4\pi}\sqrt{\lambda L}$	$rac{1.89\lambda}{4\pi}\simrac{\lambda}{2\pi}$	$CF^{EA} = \frac{\left(\frac{\lambda}{2\pi}\right)^2}{\sqrt{\left(\sigma_x^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_y^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)}}$
COHERENT FRACTION ID16A U18 L=1.4m @17.225 keV

https://arxiv.org/abs/1801.07542

Coherent fraction values (in %) calculated as occupation of the first coherent mode using the COMSYL software (CF^C), and compared with approximated expressions CF^E , CF^{EA} and CF^K (see text) for an undulator U18 L=1.4m at 17.225 keV.

Storage ring	CF^C	CF^E	CF ^{EA}	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
	$\sigma_{r'}$	σ_r	$\sigma_r \sigma_{r'}$	
Kim	$\sqrt{rac{\lambda}{2L}}$	$\sigma_r = rac{1}{4\pi}\sqrt{2\lambda L}$	$+\frac{\lambda}{4\pi}$	$CF^{K} = \frac{\left(\frac{\lambda}{4\pi}\right)^{2}}{\sqrt{\left(\sigma_{x}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{y}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)}}$
Elleaum e		$\frac{2.740}{4\pi}\sqrt{\lambda L}$	$\frac{1.89\lambda}{4\pi}\sim\frac{\lambda}{2\pi}$	$CF^{EA} = \frac{\left(\frac{\lambda}{2\pi}\right)^2}{\sqrt{\left(\sigma_x^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_y^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)}}$

COHERENT FRACTION ID16A U18 L=1.4m @17.225 keV

https://arxiv.org/abs/1801.07542

Coherent fraction values (in %) calculated as occupation of the first coherent mode using the COMSYL software (CF^C), and compared with approximated expressions CF^E , CF^{EA} and CF^K (see text) for an undulator U18 L=1.4m at 17.225 keV.

Storage ring	CF^C	CF^E	CFEA	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
	$\sigma_{r'}$	σ_r	$\sigma_r \sigma_{r'}$	
Kim	$\sqrt{rac{\lambda}{2L}}$	$\sigma_r = rac{1}{4\pi}\sqrt{2\lambda L}$	$\frac{\lambda}{4\pi}$	$CF^{K} = \frac{\left(\frac{\lambda}{4\pi}\right)^{2}}{\sqrt{\left(\sigma_{x}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{y}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)}}$
Elleaum e	$0.69\sqrt{rac{\lambda}{L}}\sim\sqrt{rac{\lambda}{2L}}$	$\frac{2.740}{4\pi}\sqrt{\lambda L}$	$rac{1.89\lambda}{4\pi}\simrac{\lambda}{2\pi}$	$CF^{EA} = \frac{\left(\frac{\lambda}{2\pi}\right)^2}{\sqrt{\left(\sigma_x^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_y^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)}}$

COHERENT FRACTION ID16A U18 L=1.4m @17.225 keV

https://arxiv.org/abs/1801.07542

Coherent fraction values (in %) calculated as occupation of the first coherent mode using the COMSYL software (CF^C), and compared with approximated expressions CF^E , CF^{EA} and CF^K (see text) for an undulator U18 L=1.4m at 17.225 keV.

Storage ring	CF^C	CF^E	CFEA	CF^K	
ESRF (EBS)	2.8	3.22	3.08	0.88	
ESRF (High β)	0.13	0.14	0.14	0.04	

	Photon beam divergence	Photon beam size	Photon phase space volume	Coherent Fraction
	$\sigma_{r'}$	σ_r	$\sigma_r \sigma_{r'}$	
Kim	$\sqrt{\frac{\lambda}{2L}}$	$\sigma_r = rac{1}{4\pi}\sqrt{2\lambda L}$	$\frac{\lambda}{4\pi}$	$CF^{K} = \frac{\left(\frac{\lambda}{4\pi}\right)^{2}}{\sqrt{\left(\sigma_{x}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{y}^{2} + \frac{\lambda L}{8\pi^{2}}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^{2} + \frac{\lambda}{2L}\right)}}$
Elleaum e	$0.69\sqrt{rac{\lambda}{L}}\sim\sqrt{rac{\lambda}{2L}}$	$\frac{2.740}{4\pi}\sqrt{\lambda L}$	$\frac{1.89\lambda}{4\pi}\sim\frac{\lambda}{2\pi}$	$CF^{EA} = \frac{\left(\frac{\lambda}{2\pi}\right)^2}{\sqrt{\left(\sigma_x^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_y^2 + \frac{\lambda L}{2\pi^2}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)\left(\sigma_{x'}^2 + \frac{\lambda}{2L}\right)}}$

COMSYL EBS SOURCE (CF 0.028)

YouTube FR

Search

Coherent modes of synchrotron radiation for EBS

COMSYL HIGH BETA SOURCE (CF 0.0013)

YouTube FR

Search

Coherent modes of synchrotron radiation for ESRF-High beta

SRW – ZERO EMITTANCE

ESRF The European Synchrotron

50

100

50

100

SRW - EBS

×10⁸

2.5

1.5

0.5

×10⁷

×10⁷

18

16

14

12

10

6

4

 $\times 10^{7}$

2

x coordinate [nm]

SRW – HIGH BETA

- The synchrotron beam emission is due to a collaborative effect of the electrons in a bunch that are responsible of the partial coherence of the beam.
- Zero emittance rings are really "diffraction limited" providing a single coherence mode. Upgrade storage ring emission must be treated as partial coherence.
- For storage rings emission all coherence properties can be deduced from the Cross Spectral Density. Its storage and propagation is usually unmanagleable by present computers.
- COMSYL introduces a new accurate coherent mode decomposition that:
 - Provides a method of effective storage of CSD
 - Introduces the new concept of "mode spectrum" that quickly summarizes the main coherence properties at a given point of the beamline
 - Computes accurately the coherent fraction
 - Allows to use known propagation methods to propagate modes
 - Permits computing coherent properties of the beam at *any* point of the beamline

• Applications for a simplified coherence beamline and a nanofocusing ultimate beamline (ID16A) are discussed

Mark Glass Rafael Celestre Giovanni Pirro

Luca Rebuffi

Julio Cesar Da Silva Ray Barrett

Thank you!

