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Motivation and background
 Many next-generation storage rings will employ two rf systems

– Increase the Touschek lifetime of the ultra-low emittance beam
– Decrease single-bunch wakefield effects (rf heating, microwave instability, TMCI)
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 Many next-generation storage rings will employ two rf systems

– Increase the Touschek lifetime of the ultra-low emittance beam
– Decrease single-bunch wakefield effects (rf heating, microwave instability, TMCI)

 APS-U plans to use a passive HHC that is tuned to maximize lifetime
– Longitudinal potential goes from harmonic (~ z2) to approximately quartic (~ z4)

– Average synchrotron frequency <ωs> becomes small with a spread ~ mean

 How does this affect longitudinal multi-bunch instabilities?
– Low mean synchrotron frequency increases growth rates
– Large synchrotron frequency spread introduces Landau damping

 We will present a theory that quantitatively addresses these competing interests
– Growth rates are related to the matrix theory introduced by Thompson and Ruth [1]
– Theory includes a dispersion integral which gives Landau damping similar to that 

predicted in [2-4], but in a fully self-consistent manner.
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Whirlwind derivation of the theory from 
the linear, multi-bunch Vlasov equation

 We index each bunch by n (0 ≤ n ≤ Nb – 1), transform to action angle variables          , and 
linearize the set of Vlasov equations via                                                          with              
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1. Assume W|| varies slowly over the bunch length and Taylor expand
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 To get a tractable solution, we do the following:

1. Assume W|| varies slowly over the bunch length and Taylor expand

2. Expand z as the Fourier series

3. “Solve” for fn on the left-hand-side by using                                                            and 
integrating over angle similar to [5,6]
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Whirlwind derivation of the theory from 
the linear, multi-bunch Vlasov equation

 We index each bunch by n (0 ≤ n ≤ Nb – 1), transform to action angle variables          , and 
linearize the set of Vlasov equations via                                                          with              

 To get a tractable solution, we do the following:

1. Assume W|| varies slowly over the bunch length and Taylor expand

2. Expand z as the Fourier series

3. “Solve” for fn on the left-hand-side by using                                                            and 
integrating over angle similar to [5,6]

4. Define the centroid                                                                                     and approximate eiℓΩT0 ≈ e iℓ<Ω>T0  on the 
right-hand side.
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 We diagonalize the coupling matrix M by finding a matrix U such that (UMU–1)n,j = λnδn,j, 
with                              the coupled bunch mode and λn the coupled bunch eigenvalue.
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Example 1: Simple harmonic oscillator
 For the simple harmonic oscillator, we have simple expressions for everything:

 The dispersion relation is similarly simple

 To get this into the familiar form, we use Ω2 – ωs
2 = (Ω + ωs)(Ω – ωs) ≈ 2ωs (Ω – ωs) so that

 In general, consistency requires the approximation Ω2 – ωs
2 ≈ 2ωs (Ω – ωs), because we 

used the approximation Ω ≈ <Ω> in the matrix calculation for λn.

 However, we will see that setting Ω2 – ωs
2 ≈ 2ωs (Ω – ωs) is not required for the APS long-

range wakefield because of the parameters of the APS higher-order modes (HOMs). 
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Example 2: Weakly nonlinear oscillator
 We add a small nonlinearity to the simple harmonic potential of the single rf system:
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Example 2: Weakly nonlinear oscillator
 We add a small nonlinearity to the simple harmonic potential of the single rf system:

 The dispersion relation can be approximated for |b| << 1 as

 As written, the integral is discontinuous when the imaginary part of Ω changes sign

 Landau [8] showed that this dispersion relation only applies when Im(Ω) > 0

 When Im(Ω) < 0 we must analytically continue the dispersion relation by deforming the 
contour to be always below the poles  → Landau damping
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Multi-bunch dispersion relation for the 
weakly nonlinear oscillator

 Once the Landau contour is specified, the integration can be done analytically
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 Solving for purely real ζ when λ is pure imaginary gives “Landau damping rate”
– The matrix eigenvalue λ ≈ 0.909 ωsb is marginally stable with Ω ≈ ωs(1 + 1.35b)
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 Once the Landau contour is specified, the integration can be done analytically

 Solving for purely real ζ when λ is pure imaginary gives “Landau damping rate”
– The matrix eigenvalue λ ≈ 0.909 ωsb is marginally stable with Ω ≈ ωs(1 + 1.35b)

– This damping rate is about 10% larger than that given by Refs. [2-3]

7Ryan Lindberg – Future Light Source 2018 – March 8, 2018

Ei(x) is the exponential integral
ζ = (Ω – ωs)/bωs

[2] J.M. Wang. “Longitudinal symmetric coupled bunch modes,” Lab. Rep. No. BNL 51302 (1980).
[ 3] M.S. Zisman, S. Chattopadhyay, and J.J. Bisognano. “ZAP user's manual,” Lab. Rep. No. LBL-21270 (1986).

Matrix growth rates < frequency spread are counteracted by Landau damping



Multi-bunch dispersion relation for the 
weakly nonlinear oscillator

 Once the Landau contour is specified, the integration can be done analytically

 Solving for purely real ζ when λ is pure imaginary gives “Landau damping rate”
– The matrix eigenvalue λ ≈ 0.909 ωsb is marginally stable with Ω ≈ ωs(1 + 1.35b)

– This damping rate is about 10% larger than that given by Refs. [2-3] 

 To proceed, we use the matrix growth rate associated with a higher-order mode 
(HOM) in the rf cavities which, for 1/T0 >> fHOM/(2Q) >> fs is a Lorentzian:
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driven by a HOM
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HOM-driven growth rates for the weakly 
nonlinear oscillator

 Instability growth rate is no longer symmetric about the revolution harmonic

 Landau damping provided by nonlinearity is less effective as the strength of 
the instability increases
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HOM-driven growth rates for the weakly 
nonlinear oscillator

 Instability growth rate is no longer symmetric about the revolution harmonic

 Landau damping provided by nonlinearity is less effective as the strength of 
the instability increases

 This implies that simply subtracting a single Landau damping rate from the 
instability growth rate will only approximately predict stability
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Double rf system with HHC tuned to 
produce quartic potential

 We assume that the bunch-lengthening system is tuned to produce the quartic potential
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 The longitudinal position  

 After a fair bit of algebra, we can write out the dispersion relation as
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HOMs in the APS-U rf cavities
 The APS-U plans to retain between 8 and 12 main rf cavities of the present-day APS

 Five HOMs have been identified that may drive longitudinal coupled bunch modes
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fHOM (MHz) Rs (kΩ) Q/103 1/T0 (kHz) fHOM/2Q (kHz) No HHC f
s
 (kHz) HHC <fs> (kHz)

921 620 106 272 4.3 0.53 ~0.15

1205 495 94 272 6.4 0.53 ~0.15

1500 396 89 272 8.4 0.53 ~0.15

1645 236 24 272 34 0.53 ~0.15

1700 300 37 272 23 0.53 ~0.15
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 HOMs satisfy 1/T0 >> fHOM/(2Q) >> fs → Single rf growth rate is maximized when ωHOM ≈ Nω0
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1205 495 94 272 6.4 0.53 ~0.15

1500 396 89 272 8.4 0.53 ~0.15

1645 236 24 272 34 0.53 ~0.15

1700 300 37 272 23 0.53 ~0.15

 From a facility perspective, it's natural to compare 
behavior of only the main rf cavities to that using 
both the main and harmonic (HHC) systems (red)

 Our theory connects growth rates including the 
HHC to those of a (fictitious) single rf system with 
the same bunch length (blue)

– Approximate scaling comes from system with 
depressed synchrotron frequency fs ≈ 150 Hz

– We expect maximum growth rates ~500 1/s.

fHOM = 921 MHz 
calculations 
using SHO 
potential



Theory and simulation [9] agree well for 
the maximum predicted growth rate

 Theory has subtracted off the synchrotron radiation damping rate = 49 1/s.

 Difference between SHO and HHC give damping rate between 75 1/s and 100 1/s, 
in reasonable agreement with Bosch, et al.'s Landau damping rate of 80 1/s [4] 
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Maximum growth rate as a function of 
instability strength (through Rs)

APS cavities

[4] R.A. Bosch, K.J. Kleman, and J.J. Bisognano. “Robinson instabilities with a higher-harmonic cavity,” PRSTAB 4, 074401 (2001).
[9] M. Borland. “Elegant: A flexible SDDS-compliant code for accelerator simulation,” APS LS-287 (2000)



Growth rate as we vary the HOM frequency 

 Curves are asymmetric with larger growth rates at negative detuning
– Synchrotron frequency ~ 150 Hz << asymmetry ~ 1 kHz

– Usually, the instability is maximized at  fHOM = Nf0 + fs

 Theory shows very good agreement with simulation for the 921 MHz HOM 
of the APS-U, and reasonable agreement for weaker instability strengths
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Rs = 620 kOhm (APS cavity)



Growth rate as we vary the HOM frequency 

 Curves are asymmetric with larger growth rates at negative detuning
– Synchrotron frequency ~ 150 Hz << asymmetry ~ 1 kHz

– Usually, the instability is maximized at  fHOM = Nf0 + fs

 Theory shows very good agreement with simulation for the 921 MHz HOM 
of the APS-U, and reasonable agreement for weaker instability strengths
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Rs = 620 kOhm (APS cavity) Rs = 310 kOhm (APS cavity)/2



Conclusions and outlook
 We have developed a self-consistent theory of multi-bunch instabilities for an arbitrary 

longitudinal potential
– The resulting expression is easy and fast to solve numerically
– The theory naturally joins the coupled-bunch matrix analysis developed for 

harmonic potentials with a dispersion integral that includes Landau damping
– Theory is restricted to centroid oscillations due to the expansion of the long-range 

wakefield (valid if the bunch length << distance over which the wakefield varies)
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harmonic potentials with a dispersion integral that includes Landau damping
– Theory is restricted to centroid oscillations due to the expansion of the long-range 

wakefield (valid if the bunch length << distance over which the wakefield varies)

 Theory shows good agreement with simulations of HOM-driven instabilities in an ideal 
HHC potential

– Maximum growth rate ≈

– Instability growth rate as a function of HOM frequency is asymmetric and skewed 
towards negative frequency detunings
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Growth rate in harmonic potential              Landau           
with same bunch length                 damping rate

– 
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longitudinal potential
– The resulting expression is easy and fast to solve numerically
– The theory naturally joins the coupled-bunch matrix analysis developed for 

harmonic potentials with a dispersion integral that includes Landau damping
– Theory is restricted to centroid oscillations due to the expansion of the long-range 

wakefield (valid if the bunch length << distance over which the wakefield varies)

 Theory shows good agreement with simulations of HOM-driven instabilities in an ideal 
HHC potential

– Maximum growth rate ≈

– Instability growth rate as a function of HOM frequency is asymmetric and skewed 
towards negative frequency detunings

 Theory can be used to quickly assess stability for many HOMs, and can incorporate 
wakefield and damping models of longitudinal feedback systems

 I would like to see how well the theory works for “overstretched” bunches like those that 
might be used for APS-U, and to what extent the passive HHC changes these results 
(initial simulations seem to show little difference, but more work is needed...)
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Growth rate in harmonic potential              Landau           
with same bunch length                 damping rate

– 
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Some details on elegant simulations [9]
 Lattice dynamics are simulated using ILMATRIX that includes

– Transverse linear motion and lowest order nonlinear tune shift with amplitudes

– First through third order chromatic effects

– Momentum compaction at first through third order

 Damping and diffusion from synchrotron emission simulated with SREFFECTS

 Prescribed main rf cavity at 352 MHz fundamental simulated with RFCA

 Prescribed fourth harmonic cavity tuned to flatten potential simulated with RFCA

 Long range wakefield from the 921 MHz HOM simulated with RFMODE

 Tracking proceeds is as follows:

1. Track 50k macroparticles over 20000 turns to get equilibrium bunch (ONCE)

2. Make 47 copies to evenly populate the ring with 48 bunches

3. Ramp HOM over 5000-10000 passes

4. Track particles over 25k-55k turns, use exponetial fit to determine growth rate

5. Obtain damping rate by first driving coupled-bunch motion with an unstable HOM, 
then shift the HOM frequency toward stability and measure damping rate
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[9] M. Borland. “Elegant: A flexible SDDS-compliant code for accelerator simulation,” APS LS-287 (2000)


