CSR model in GPT

Bas van der Geer

M.J. de Loos, Pulsar Physics, Eindhoven, The Netherlands I.D. Setija, P.W. Smorenburg, ASML, Veldhoven, The Netherlands P.H. Williams, STFC Daresbury Laboratory and Cockcroft Institute, Warrington, United Kingdom

Top-secret: CSR-measurement vs. simulation codes Jared Kushner 2.0 200 S 1.5 *ϵ_{n,x}* (mm–mrad) length 150 1.0 bunch 100 rms 0.5 50 Elegant CSRTrack 3-d Analytic GPT Measurement 0.0

Compression

CSR model in GPT: Basics

Calculation is based on Liénard Wiechert fields

$$\begin{split} \mathbf{Coulomb term} & \mathbf{Radiation term} \\ \mathbf{E}(\mathbf{r},t) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q(\mathbf{n}-\boldsymbol{\beta})}{\gamma^2(1-\mathbf{n}\cdot\boldsymbol{\beta})^3 |\mathbf{r}-\mathbf{r}_s|^2} + \frac{q\mathbf{n}\times\left((\mathbf{n}-\boldsymbol{\beta})\times\dot{\boldsymbol{\beta}}\right)}{c(1-\mathbf{n}\cdot\boldsymbol{\beta})^3 |\mathbf{r}-\mathbf{r}_s|} \right)_{t_r} \\ \mathbf{B}(\mathbf{r},t) = \frac{\mathbf{n}(t_r)}{c}\times\mathbf{E}(\mathbf{r},t) \end{split}$$

Fields can be summed with

- External beamline components
- Wakefields

No ultra-relativistic approximations

CSR model in GPT: Basics

Calculation is based on **stored history**

We use **actual** trajectories because:

• Aim is to study microbunching where the Longitudinal profile is not constant at all

 A misaligned quadrupole can act as a dipole. We want a generic CSR model that 'just works'

Storage of bunch slices that radiate

Philosophy:

- Store all *information* that is needed to evaluate the CSR fields anywhere at any later point in time.
- No field-propagation
- No $\mu\text{m-sized}$ meshing over m^3
- No shielding
- Non-equidistant discretisation follows charge quantiles to allow higher spacial-resolution at beam-core.

Field evaluation

Philosophy:

- Apply LW-potentials to stored information, taking into account *actual* retardation conditions.
- We use 4 (or 16) off-axis emission points to model transverse effects.
- We only observe the field at segment-centers, i.e. there is no transverse dependence on fields.

CSR model in GPT: Integration

The CSR model in GPT is *by design* not aware of the source of transverse acceleration

• No cross-talk in code, more options, fewer bugs

Can be combined with anything:

- field-maps
- fringe-fields
- rf-deflection cavities
- misaligned quadrupoles
- several dipoles/quadrupoles closely packed together
- ...

CSR correctly passes through downstream elements

CSR falls off via Liénard Wiechert, not via user-defined knobs

DESY 2002 workshop: 1 nC, 500 MeV, 200 to 20 µm

Parameter	Symbol	Value	Unit
Nominal energy	E ₀	0.5	GeV
bunch charge	Q	1.0	nC
incoherent rms energy spread	$(\Delta E)_{u-rms}$	10	keV
linear energy-z correlation	a	+36.0	m ⁻¹
total initial rms relative energy spread	$(\Delta E/E_0)_{rms}$	0.720	%
initial rms bunch length	σ_{i}	200	μm
final rms bunch length	$\sigma_{ m f}$	20	μm
initial normalized rms emittance	$\epsilon_{n,x}$ / $\epsilon_{n,y}$	1.0	mm-mrad
initial betatron functions at 1st bend entrance	β_x / β_y	40	m
initial alpha-function at 1st bend entrance	$\alpha_{\rm x} / \alpha_{\rm v}$	+2.6	

DESY 2002 workshop: Envelopes

DESY 2002 workshop: GPT result (2018)

8M particles, 64 cores, 3.5 hours wall-clock time

Nuclear Instruments and Methods in Physics Research A 436 (1999) 443-444

www.elsevier.nl/locate/nima

TREDI: fully 3D beam dynamics simulation of RF guns, bendings and FELs

L. Giannessi*, P. Musumeci, M. Quattromini

ENEA, Dip. Innovazione, Div. Fisica Applicata, Centro Ricerche Frascati, C.P. 65, 0044 Frascati, Rome, Italy Received 6 April 1999; accepted 30 April 1999

Abstract

We describe a three-dimensional code modelling the propagation of charged beams in accelerator devices. The inclusion of space charge fields is taken into account by means of the Lienard–Wiechert retarded potentials. As an illustration of the capabilities of the program, the results of a simulation are given that, describe the beam dynamics from

SELF FIELDS

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A

Nuclear Instruments and Methods in Physics Research A 436 (1999) 443-444

www.elsevier.nl/locate/nima

TREDI: fully 3D beam dynamics simulation of RF guns, bendings and FELs

L. Giannessi*, P. Musumeci, M. Quattromini

ENEA, Dip. Innovazione, Div. Fisica Applicata, Centro Ricerche Frascati, C.P. 65, 0044 Frascati, Received 6 April 1999; accepted 30 April 1999

Abstract

We describe a three-dimensional code modelling the propagation of charged beams in acc inclusion of space charge fields is taken into account by means of the Lienard–Wiechert retar illustration of the capabilities of the program, the results of a simulation are given that, describe the

SELF FIELDS

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A

Nuclear Instruments and Methods in Physics Research A 436 (1999) 443-444

www.elsevier.nl/locate/nima

(000) PA (000)

TREDI: fully 3D beam dynamics simulation of RF guns, bendings and FELs

L. Giannessi*, P. Musumeci, M. Quattromini

ENEA, Dip. Innovazione, Div. Fisica Applicata, Centro Ricerche Frascati, C.P. 65, 0044 Frascati, Received 6 April 1999; accepted 30 April 1999

Abstract

We describe a three-dimensional code modelling the propagation of charged beams in acc inclusion of space charge fields is taken into account by means of the Lienard–Wiechert retar illustration of the capabilities of the program, the results of a simulation are given that, describe the

SELF FIELDS

GPT: CSR results

CSR results

Shape is different

CSR in GPT: It works!

CSR model in GPT: Limitations

1D model:

- Fields are assumed to not be a function of the transverse coordinate
- Although transverse size is accounted for

Bunch is assumed to be 'sliceable' in the direction of propagation

- The underlying assumption is that all particles in the slice emit the same radiation pattern
- This is not necessarily the case for rollover compression

Free space model

• No shielding effects included

CSR model in GPT: Performance

Automatic cleanup

 Segments are removed when light emitted has overtaken the front of the bunch

Hybrid openMP/MPI implementation

- Particles are distributed over MPI nodes.
- Each node maintains only part of the history All nodes combined contain all history information
- We prefer cores (openMP) over nodes (MPI) whenever possible to reduce communication overhead
- C++ templates, += operator overloading and custom MPI reduction operators are used to prevent code duplication between openMP and MPI parts of the code

Typical performance:

• Hours of wall-clock time tracking 8M particles on 64 cores through a chicane.

Microbunching: Start from cathode, track more particles, 3D spacecharge, run GPT, and fail

The point is:

 Microbunching simulations need more particles

and

 Higher tracking accuracy per particle!

Towards micro bunching simulations

Test-case:

- Same settings: DESY 2002
- Small initial density fluctuation at fixed wavelength

Result:

- Density → energy fluctuation
- Wavelength chirp due to transport

CSR in GPT: Summary

It runs

• Survives all sanity checks so far

Code can handle

- Any beamline geometry: chicanes, arcs, ...
- Cases where rigid bunch approximation is not valid
- Relatively large transverse beam sizes
- CSR passing through other components
- Low energy (tested down to 5 MeV)

With more particles it also covers:

- Small transverse sizes (few ten micron)
- High energy (tested up to 500 MeV)
- Micro bunching

GPT CSR Bas van der Geer

The end

Questions to the audience:

Is this CSR model useful for FEL simulations?

What is more important?

- Shielding
- Off-axis dependence of fields
- Performance

How many (density) oscillations per pulse need to be studied?

• Is there a maximum