Fast Simulation of FEL Linacs with Collective Effects

M. Dohlus IPAC 2018

A typical X-FEL

gun environment photo cathode cavity, solenoid, drift	straight cavity, quadrupole, drift	dispersive bend, quadrupole, drift	FEL undulator, quadrupole, wakes
	Linacs diagnostics transport	chicanes collimators dog legs	FEL interaction
	·		

"accelerator"

4 Types of Problems

	gun environment photo cathode cavity, solenoid, drift	cathode physics self-fields ~ external fields assumption for self fields: "SC" or Maxwell	Parmela, Astra, GPT, CST-PS, Impact, Opal,
"accelerator"	straight cavity, quadrupole, drift	external fields > self fields standard approaches:	Astra, GPT,
	dispersive bend, quadrupole, drift	"SC" for straight part, 1D-CSR for non-straight part	Impact, Opal, Ocelot, Xtrack, CSRtrack,
	FEL undulator, quadrupole, wakes	FEL effects slippage & wave propagation mono- or multi-frequent	Genesis, Alice, Fast, Ginger,

About EM-Fields: Gun

emission model \rightarrow cathode distribution

Laser (transverse & time) quantum efficiency (transverse)

Charge density

self fields
$$E_z \sim \frac{Q}{\varepsilon_0} \frac{1}{\pi r^2}$$

same order of magnitude

tracking with different types of self fields

About EM-Fields: First Straight Section

full Maxwell

PBCI

(PITZ at DESY, Zeuthen)

grid Δ = 50 μ m			
mesh-cells ~ 300×10 ⁶			
time-steps ~ 10⁵			
simulation time ~ 1 3 day			
parallel computing			

collective uniform motion Astra

~ minutes scalar computing

q = 2 nC

courtesy E. Gjonaj (TUD-TEMF)

courtesy E. Gjonaj (TUD-TEMF)

About EM-Fields: Maxwell vs. CUM

About Tracking: General vs. Adopted

general purpose tracking

no assumption about fields any spatial and time dependency any ratio of self- to external fields

difficult step width control fine steps in fringe fields

applications strong self fields gun or validation of adopted tracking

adopted tracking

generic description of external fields field regions with hard boundaries f.i. $\mathbf{B}(x, y, z, t) = \nabla \times (\mathbf{e}_z A(x, y))$

tracking between boundaries in large steps special steps at boundaries (edges)

applications weak self fields cavities and magnets above 10 MeV

very effective

remarks

gun: needs cathode and emission model external fields by field maps → general tracking method self fields by CUM or even Maxwell, large effort for Maxwell interplay of self- and external fields is crucial (emittance compensation) computation and optimization is time consuming

gun and "accelerator" are computed separately

straight sections: self fields by CUM + wakes
generic external fields → adopted tracking method
very effective computation (per length)

to be considered: wakes (geometry, resistivity of chamber) CSR (trajectory, ... chamber)

Wakes

wakes are pre-calculated solutions

source particle $\mathbf{r}_s(t) = x_s \mathbf{e}_x + y_s \mathbf{e}_y + ct \mathbf{e}_z$ with charge q_s creates fields **E**, **B**

test particle $\mathbf{r}_t(t) = x_t \mathbf{e}_x + y_t \mathbf{e}_y + (ct - s)\mathbf{e}_z$ gets integrated kick $\Delta \mathbf{p}$

$$\mathbf{w}(x_s, y_s, x_t, y_t, s) = \frac{\Delta \mathbf{p}}{q_s q_t}$$

short & long range wakes

monopole and dipole wakes in structures with symmetry of revolution !!!

longitudinal and transverse wakes

offset-independent

remarks

wake updates are fast compared to SC updates, but less often

accelerator:

effects due to transverse wakes are minor effects due to longitudinal wakes are essential \rightarrow long. phase space and compression

in undulator:

longitudinal wake causes energy loss

tapering

FEL codes use a wake per length (averaged for a typical section)

transient wakes can be used for dispersive sections (\rightarrow 1D CSR model)

CSR Effects in Chicanes

do not try this at home: $1nC \rightarrow 5 \text{ kA} @ 500 \text{ MeV}$

without self-interaction

CSR Effects in Chicanes

do not try this at home: $1nC \rightarrow 5 \text{ kA} @ 500 \text{ MeV}$

without self-interaction

Interplay for Start-to-End Simulations

The Standard Approach

Impact, Opal, Ocelot, Xtrack, ...

CUM + adopted wakes 1D CSR parallel implementations

Considered Effects of Standard Approach

precise longitudinal dynamics (compression)

longitudinal profile peak current correlated & un-correlated energy spread BCs: parallel plate shielding (perfect conducting)

transverse self effects

transverse shape emittance SC optics, mismatch & self-mismatch

micro-bunching

start-up from shot-noise needs "full particle" simulation and high spatial resolution identify critical wavelength increased emittance and energy spread effect of laser heater

micro-bunching with full-particle-simulation

PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 054402 (2017)

Start-to-end simulation of the shot-noise driven microbunching instability experiment at the Linac Coherent Light Source

J. Qiang,^{1,*} Y. Ding,^{2,†} P. Emma,² Z. Huang,² D. Ratner,² T. O. Raubenheimer,² M. Venturini,¹ and F. Zhou²

Missing Effects of Standard Approach

3D CSR model

density(x,y,s)
force vector (x,y,s)
consistent treatment of "SC" + "CSR"

1D CSR model density(s) long. force (s)

BC chambers: CSR + resistive wall effects in

energy loss \rightarrow beam dynamics \rightarrow heating

radiation

Lighter Approaches and Special Methods

3D beam & 1D forces: (as Elegant or Xtrack)

1D self effects (**long. SC impedance**, wakes, 1D CSR) 3D beam & tracking

applicability of longitudinal SC impedance: $\gamma z_c >> \sigma_{\perp}$ z_c is characteristic length (bunch length or scale of micro-bunching)

this condition is usually good fulfilled after the first cavities for the rest of the machine, if there is no micro-bunching

in straight sections after the first cavities the longitudinal shape is nearly frozen

light trackers: (as LiTrack or Rftweak) with 1D beam & tracking

discrete model (with effective impedance) for straight sections, pre-calculated wake-tables for dispersive sections (CSR) \rightarrow tool for control room

micro-bunching (special):						
1D particles		LGM (linear gain model)				
one macro particl shot noise $\{z_v, p_{zv}\}$ dynamics in longit	e per electron	continuous 6d phase space coasting beam + periodic perturbation $F(\mathbf{r},\mathbf{p}) = F_0(\mathbf{r},\mathbf{p}) + f(\mathbf{r},\mathbf{p})$ dynamics in full phase space				
initial z-distributio initi	on = arbitrary al energy distributior	<pre>initial z-perturbation = harmonic = arbitrary, z-independent initial transverse phase space = gaussian</pre>				
	1d space cha 1d	arge impedance wakes 1d CSR				
particle tracking		integral equation				
phase space non-linear effects (as saturation and	harmonics)	<mark>gain</mark> linear				

Lighter Approaches and Special Methods

periodic simulation with 4pC

Finally, Computation Times

scalar parallel

