BASELINE LATTICE FOR THE UPGRADE OF SOLEIL

1414410

Future Light Source March 5-9 2018

Shanghai Institute of Applied Physics

Alexandre Loulergue

On behalf of the Accelerators and Engineering Division

Upgrade Lattice Outline

- 2016 proposition 200 250 pm.rad
- 2017 baseline 72 pm.rad
- Injection investigation
- Tunnel investigation
- Timeline

SOLEIL Today

2008 : Open to users 2009 : Top-up operation 2018 : 29 beamlines (2 under commissioning)

Upgrade Lattice Evolution

L. Farvacque et al. , A Low-Emittance Lattice for the ESRF, Proceedings of IPAC (2013)

Upgrade Lattice Evolution

To push further the emittance reduction and to maximize the photon flux in the soft X-rays photon energy up to 3 keV :

We increased the number of cells from 16 to 20 without short straight sections giving 20 straights of length of 4.4 m (25% of the circumference). The natural emittance is then reduced down to 72 pm.rad (or 50 pm.rad at full coupling)

The optics also includes low beta function (~ 1 m) at straight center for electron-photon matching

Upgrade lattice baseline

Ring FMA

Perfect lattice 4D tracking TRACYIII

7

Taken at straight center

FLS March

Ring beam dynamics

Perfect lattice 4D-6D tracking AT2.0

FLS March 5-9 2018, Shanghai

ROTRON

Touschek Lifetime

Perfect lattice AT2.0

Beam pipe diameter of 16 mm RF Voltage of 1.1 MV Natural bunch length of 3.7 mm RMS

With 72 in H and 10 in V pm.rad the beam lifetime is about 1.5 h at 500 mA (1.4 nC per bunch)

Up to 3 h at full coupling (50 x 50 pm.rad)

Simple horizontal emittance scan Seems to be on the good side !

No bunch lengthening by means of third harmonic here

IBS emittance increase

Preliminary IBS effect computed with Elegant code : Simple Gaussian distribution model ZAP code gives equivalent values

Emittance increase by 30 % with natural RMS bunch length (3.7 mm / 0 mA) Limited to 10 % with RF harmonic bunch lengthening (x 5)

Insertion of 3T super-bend in the central magnet of the cell

To increase the photon flux above 10 keV

4 are foreseen, one each 5 cells

Emittance impact is not negligible The present H-function is not well suited

SOLEIL present field

3 T super-bend

Shifted quadrupoles by ~1.3 mm to reduce the H-function and limit the emittance increase (here from 72 to 80 pm.rad)

A. Streun, The anti-bend cell for ultralow emittance storage ring lattices NIMA, 737 (2014)

SULLEIL

3 T super-bend + 1.8 T

Add 1.8 T on central bend of other cells to reduce back the emittance ~ 70 pm.rad

Possibility to reduce the emittance down to ~60 pm.rad by pushing further the reverse bend but at the cost of a larger energy spread and a lower momentum compaction ...

Electron-Photon Matching

Diffraction limited photon beam emittance is 65 pm.rad at an energy of 3 keV

 $\beta_{matched} = L/\pi \approx 1.27 \, m$ for a undulator of 4 m

With 50 pm.rad and $\beta = 1 m$ the beam size is 7 µm and 7 µrad RMS in divergence in both planes at source.

SULEIL

Photon Brilliance Comparison

Photon Energy

The brilliance increase reach two orders of magnitude in the region of interest:

Between 1 to 3 keV, exceeding a value of 10²² photons/s/mm2/mrad2/0.1%b.w

It can exceed 10²⁰ photons/s/mm2/mrad2/0.1%b.w at 40 keV,

SOLEIL

Transverse Coherence Fraction Comparison

The photon beam should be fully coherent up to almost 200 eV, exceeding 40 % at 1 KeV And reaching 14 % at 3 KeV

Undulator Spectral Purity Comparison

Photon Energy [keV]

Try Vertical Injection With Non Linear Kicker (NLK)

Try Vertical Injection With Non Linear Kicker

The booster emittance of 130 nm.rad became rather large as compared to low emittance acceptance lattices ...

FLS March 5-9 2018, Shanghai

=> Doubling the number of cells

=> Reuse ring quad and sext?

gives 30 nm.rad

Longitudinal Injection on Chromatic Orbit With a NLK and an Extra RF Pulse

Fitting the Tunnel and Beamline Positions

The 20 cell symmetry gives a "round" geometry that doesn't perfectly fit the present tunnel with long and short straight sections. Modulating the deviation per cells (initially 18°) :

Keeping sextupole and octupole strengths, the beam dynamics is ~unchanged. Emittance increase is marginal

But enlarge the number of dipole magnet types (\pm 7 % in dipolar field)

Nevertheless, 8 ratchet walls will have to be also slightly changed to have :

- The 20 straight line sources
- (17 identified for experiments)
- The 4 3T bend sources available

Quadrupole Strength Errors

DA drops from 1.5 to ~1.2 mm

Lower Emittance With On Axes Injection

As a possible candidate ...

9 BA variation giving a natural emittance of 32 pm.rad Also 20 cells for one turn

On momentum DA is limited but has a rather large off momentum DA Intensive MOGA optimization On axis injection / off momentum

Temporal Structure and Short Bunches

Temporal structure

- As today : Hybrid/Camshaft mode, 1 bunch, 8 bunches
- Possibility of Pseudo Single Bunch

C. Sun et al. Realization of Pseudo Single Bunch Operation with Adjustable Frequency., Proceeding of IPAC 2015

Short pulse option

Use of two harmonic cavities of different frequencies «à la BESSY VSR» to shape the longitudinal phase space producing short and long bunches

SOLEIL	f _{RF} (GHz)	V _{RF} (MV)	V' _{rF} (MV. GHz)	G. Wüstefeld et al., Simultaneous Long and Short Electron Bunches the BESSY II Storage Ring, Proceedings of IPAC 2011.
cavity	0.352	1	2π 0.35	Jankowiaket al., The Bessy VSR Project For Short X-Ray Pulse Production, <i>Proceeding of IPAC 2016</i>
First harmonic SC cavity (n=5)	1.760	10	2π 17.6	
S nd harmonic SC cavity (n=5+1/2)	1.936	9.1	2π 17.6	
Even fixed points			2 π 35	
Gain			35/0.35 = 100	
Theoretical bunch length reduction			$\sqrt{100} = 10$	→ From 24 to 2.4 ps FWHM (at 0 mA)

Timeline

	Date	Phase		
	Dec. 2016	Council meeting, presentation of the first proposal for an upgrade.		
	2017 - 2019	Discussions regarding the definition of the project (beamlines and storage ring); definition of objectives. Baseline Lattice defined.		
	2018 - 2019 Continuation of discussions and prototyping to assess feasibility of key opti			
2019 Decision to launch a Concept		Decision to launch a Conceptual Design Report (CDR).		
	2019-2020	CDR based on preliminary studies and prototyping.		
	2020	Decision to launch a Technical Design Report (TDR).		
	2020-2022	2020-2022 Technical Design Report.		
č	2022 Decision to start the project.			
	2022-2025	Reconstruction of storage ring and beamlines.		
	2026	Restart of user operation.		

.

Conclusion

The present SOLEIL upgrade lattice baseline achieve a low natural emittance of 72 pm.rad or 50 x 50 pm.rad at full coupling.

Including a third harmonic cavity should guarantee a correct beam lifetime as well as a limited emittance increase from IBS.

Low beta function at straight level for a good electron-photon matching up enabling a very high brilliance in the 1 to 3 keV region (SOLEIL scientific case target).

Injection is still under investigation while keeping the high lattice symmetry enabling a more comfortable beam dynamics acceptance.

Additional changes (under investigation) :

- Beamlines redistribution
- Injector upgrade with much lower emittance from the booster (130 down to ~30 nm.rad)
- Super-Conducting to warm main RF system (no space anymore and lower voltage needed)
- 8 ratchet walls to be slightly modified
- <u>Ongoing task</u> :
- Extensive errors analysis
- Magnet design and pulsed elements feasibility just started

Thank you for your attention

FLS March 5-9 2018, Shanghai

For a undulator of 4 m, the matched beta function is :

$$\beta \simeq \frac{L_{und}}{\pi} = 1.27 \, m$$

Actual optics

Natural emittance : 140 nm.rad 110 nm.rad at minimum

Possible upgrade :

Splitting the long 32 dipoles with 32 additional quadrupoles

Natural emittance is 30 nm.rad

Keep RF and injection/extraction section as there are.

S(m)

1/8 of the ring

FLS March 5-9 2018, Shanghai

MAINT

...*

FLS March 5-9 2018, Shanghai

AA'

...*