ICFA Mini-Workshop on Machine Learning for Accelerators

March 5, 2018 D. Ratner, et al. SLAC National Accelerator Laboratory

Topics

SLAC

- 1. Facility needs
- 2. Optimization/tuning
- 3. Simulation/Modeling
- 4. Prognostics
- 5. Data analysis

bruary 28 - March 2, 2018, SLAC National Accelerator Laboratory

2/27 TUESDAY	2/28 WEDNESDAY	3/1 THURSDAY	3/2 FRIDAY
Beginner/Intermediate Tutorial			
	Workshop intro (10 min), Session intro (15 min) (Kevin	NN Modeling (A. Edelen)	ML for MBI (Boltz)
	Facility LHC (Kajetan/Jorg)	Collective effects (Adelmann)	Non-parametric density estimators (Mohavai?)
	Facility XFEL (Raimund)	Light source simulations (Tomin)	Data mining at HIPA (Snuverink)
Coffee	Facility Synch (Xiaobiao)	Coffee/Poster session	Coffee/Poster session
	Coffee	Coffee/Poster session	Coffee/Poster session
	Fault detection (Nielsen)	machine modeling at FAST (J. Edelen)	Session summary
	Facility Other Side (Candel)	GANs (Oliviera)	Session summary
	Facility Discussion	Simulations/Modeling discussion 2	White paper/ Collaboration planning
Lunch	Lunch	Lunch	Lunch
Lunch	Lunch	Lunch	Lunch
Dcelot satellite meeting/ Tutorial	Reinforcement learning (Wu) Gaussian Process 1 (Kirschner)	Prognostics: ML for anomaly detection in distributed Beam loss plan recognition (Valentino)	White paper/ Collaboration planning White paper/ Collaboration planning White paper/ Collaboration
	Gaussian Process 2 (Duris)	DESY zoom talk?	planning White paper/ Collaboration
	Poster blitz	Prognostics discussion	plaining
	Poster blitz	Coffee/Poster session	
	Coffee/Poster session	Coffee/Poster session	
	Coffee/Poster session	Tour	
	XFEL tuning (Agapov)	Tour	
	Online opt (Scheinker)	Tour	
	opt with GA (Bazarov)	Tour	
	Model Free Discussion	Tour	
	Dutch Goose	Reception at the Meyer-Buck Estate	

Attendees

SLAC

65 Participants from 20+ Institutions:

Specialties spanning computer science, physics, controls, operations, industry

Tutorial

Full day tutorial for machine learning novices ~60 participants learning basic ML and Ocelot platform

D. Bowring, A. Edelen, C. Mayes, I. Agapov, S. Tomin

Highlights: Facility needs

Some recurrent needs:

- 1. Identify broken parts, predict failures
- 2. Faster simulations, online models
- 3. Digging through large data sets for correlations, new physics

Highlights: Facility needs

Some recurrent needs:

- 1. Identify broken parts, predict failures
- 2. Faster simulations, online models
- 3. Digging through large data sets for correlations, new physics

General themes:

- 1. How do we identify where ML adds value?
- 2. Look for opportunities to collaborate

SLAC

Wide agreement on need for automated tuning Question: model-based or model-independent?

Wide agreement on need for automated tuning Question: model-based or model-independent?

Wide agreement on need for automated tuning Question: model-based or model-independent?

-SLAC

Wide agreement on need for automated tuning Question: model-based or model-independent?

Extremum seeking: A. Scheinker

 $\frac{d\mathbf{p}}{dt} = -\frac{k\alpha}{2} \left(\nabla_{\mathbf{p}} V(\mathbf{x},t) \right)^T$

On average, the system performs a gradient descent of the unknown, timevarying function V(x,t)

levice limit

Tuning platforms: Ocelot (DESY) provides generic base for accelerator optimization/simulation → Now multi-lab collaboration

Objective and Alarm	Function Setup Objective function def.		
PV: A	XFEL.FEL/XGM.PREPROCESSING/XGM.2643.T9.CH0/RESULT.TD		
PV: B			
PV: C			
PV: D			
PV: E			
Objective Function:	np.mean(np.array(A)[:,1])		
Max Penalty	300 300		
Use Predefined Objective Function			
Edit Objective Function			
Machine Status			
Alarm 1 XFEL.DIAG/CHARGE.ML/TORC.3098.T4D/BEAM_MASTERTRANSMISSION.SA1 Value: 0.0			
Limits: Min 0.00	C Max 100.00		
Wait 2.00	sec after recovering Pause code if		
Scanner Parameters			
Select Optimiser Algorithm	Simplex Norm.		
Number Iterations	50 🕄		
Set Best Solution After Optimiz	ation Out, month and apple stime and initial store		
Simplex With Normalization	Opt. method selection and initial step		
Relative Step in %	5.00		
■ Usa Initial Simplex/Step [step =(Max - Min) x RelStep[%]]			

hours/year in 2016 → Automated tuning cut avg time by half

SLAC

Total Time Average Time

Genetic algorithms to find optimize and find pareto frontier

1 3

Genetic algorithms to find optimize and find pareto frontier

1 4

Genetic algorithms to find optimize and find pareto frontier

Genetic algorithms to find optimize and find pareto frontier

1 6

Genetic algorithms to find optimize and find pareto frontier I. Agapov, DESY CESR simulation, noiseless 10^{-4} relative units DA orbit, Σx^2 (m²) 10-5 0.0 20 80 100 40 60 Emittance, nm·rad Pareto frontier 10^{-6} 2×10^{-12} $3 \times 10^{-12} 4 \times 10^{-12}$ 6×10^{-12} 10-12 10^{-11} 1 I. Bazarov et al., Cornell vertical emittance (m) 7

Model-based: Reinforcement learning (used by alpha-GO)

Model Learning

Can train on models first to get a good initial solution before deployment

Can use supervised learning to first approximate the behavior of a different control policy

A. Edelen, CSU

Model-based: Reinforcement learning (used by alpha-GO)

Can train on models first to get a good initial solution before deployment

Can use supervised learning to first approximate the behavior of a different control policy

A. Edelen, CSU

Model-based: Reinforcement learning (used by alpha-GO)

Can train on models first to get a good initial solution before deployment

Can use supervised learning to first approximate the behavior of a different control policy

A. Edelen, CSU

Model-based: Reinforcement learning (used by alpha-GO)

A. Edelen, CSU

(Minutes)

Sep 01, 2016

н

Model-based: Bayesian optimizers (Gaussian Process Model)

Model-based: Bayesian optimizers (Gaussian Process Model)

Model-based: Bayesian optimizers (Gaussian Process Model)

Train on archive → Tune from noise!

24

Modeling systems with neural networks: Examples at FAST

Predict RFQ frequency

Modeling systems with neural networks: Examples at FAST

Predict RFQ frequency

Modeling systems with neural networks: Examples at FAST

Predict RFQ frequency

SLAC

A. Edelen

Modeling systems with neural networks: Examples at FAST

Predict RFQ frequency

SLAC

A. Edelen

Modeling systems with neural networks: Examples at FAST

Predict RFQ frequency

Predict emittance

SLAC

A. Edelen

Generative adversarial networks (GANs): mimicking simulations

L. Oliviera, LBNL

Generative adversarial networks (GANs): mimicking simulations

L. Oliviera, LBNL

Generative adversarial networks (GANs): mimicking simulations

Highlights: Prognostics

-SLAC

K-means to understand MBI structures

35

SLAC

K-means to understand MBI structures

SLAC

K-means to understand MBI structures

SLAC

K-means to understand MBI structures

SLAC

Reconstructing FEL Pulses

SLAC

Reconstructing FEL Pulses

SLAC

Reconstructing FEL Pulses

SLAC

Reconstructing FEL Pulses

SLAC

Reconstructing FEL Pulses

5 orders of magnitude faster!

General data mining: Can we use ML to learn about our machines?

J. Snuverink, A. Adelmann

false positives [%]

Currently writing white paper to summarize first workshop

Currently writing white paper to summarize first workshop

Then next workshop: March, 2019 in Switzerland!

SLAC

Thanks for listening and hope to see you at a future ML workshop!

