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Topics

1. Facility needs
2. Optimization/tuning
3. Simulation/Modeling
4. Prognostics
5. Data analysis

SLAC National Accelerator Laboratory
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Attendees

DESY
CERN
PSI

BNLFermilab
CSU
Radiasoft
LANL

SLAC
UCLA

ETHZ
KIT
Elettra
Cosylab

Oak Ridge PAL
IHEP
SINAP

SACLA

LBL

65 Participants from 20+ Institutions: 
Specialties spanning computer science, physics, controls, operations, 
industry 
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Tutorial

Full day tutorial for machine learning novices
~60 participants learning basic ML and Ocelot platform

D. Bowring, A. Edelen, C. Mayes, I. Agapov, S. Tomin
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Highlights: Facility needs

XFELs

Synchrotrons

LHC

Some recurrent needs:
1. Identify broken parts, predict failures
2. Faster simulations, online models
3. Digging through large data sets for 

correlations, new physics
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Highlights: Facility needs

XFELs

Synchrotrons

LHC

Some recurrent needs:
1. Identify broken parts, predict failures
2. Faster simulations, online models
3. Digging through large data sets for 

correlations, new physics

General themes:
1. How do we identify where ML adds value?
2. Look for opportunities to collaborate
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Highlights: Optimization

Wide agreement on need for automated tuning
Question: model-based or model-independent?
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Highlights: Optimization

Wide agreement on need for automated tuning
Question: model-based or model-independent?

Extremum seeking: A. Scheinker

RCDS: X. Huang

Example: FEL “quality” at FERMI
G. Gaio



11

Highlights: Optimization

Tuning platforms:
Ocelot (DESY) 
provides generic base 
for accelerator 
optimization/simulation
 Now multi-lab 
collaboration

S. Tomin, I. Agapov, DESY/XFEL

SLAC GUI
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Highlights: Optimization

Tuning platforms:
Ocelot (DESY) 
provides generic base 
for accelerator 
optimization/simulation
 Now multi-lab 
collaboration

S. Tomin, I. Agapov, DESY/XFEL

At LCLS: 450 
hours/year in 2016
 Automated tuning 
cut avg time by half 
in 2017!

SLAC GUI
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Highlights: Optimization

I. Bazarov et al., Cornell

Genetic algorithms to find 
optimize and find pareto frontier
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Highlights: Optimization

I. Bazarov et al., Cornell

Genetic algorithms to find 
optimize and find pareto frontier

Pareto frontier 

I. Agapov, DESY
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Highlights: Optimization

Model-based: Reinforcement learning (used by alpha-GO)

A. Edelen, CSU

Temperature control, RF photo-injector at FAST

J. Wu, SLAC
Double power!
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Highlights: Optimization

Model-based: Bayesian optimizers (Gaussian Process Model)

J. Kirschner et al., ETHZ, PSI 

Safe optimization
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GDET
noise?

GDET
~ 50 uJ

Beam power

L3 energy
Change

14 -> 6.5 GeV

GP run on 
LI26 quads

GP run on 
LTU quads

J. Duris, SLAC
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Highlights: Optimization

Model-based: Bayesian optimizers (Gaussian Process Model)

J. Kirschner et al., ETHZ, PSI 

GDET
noise?

GDET
~ 50 uJ

Beam power

L3 energy
Change

14 -> 6.5 GeV

GP run on 
LI26 quads

GP run on 
LTU quads

J. Duris, SLAC

Safe optimization

Train on archive
 Tune from 

noise!
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Highlights: Modeling/Simulations

Modeling systems with neural networks: Examples at FAST

Predict RFQ frequency

A. Edelen
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Highlights: Modeling/Simulations

Modeling systems with neural networks: Examples at FAST

Predict RFQ frequency Predict emittance

A. Edelen J. Edelen
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Highlights: Modeling/Simulations

Generative adversarial networks (GANs): mimicking simulations

L. Oliviera, LBNL
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Highlights: Modeling/Simulations

Generative adversarial networks (GANs): mimicking simulations

L. Oliviera, LBNL

Microbunching 
instability, 

SLAC

Coherent synchrotron radiation

I. Agapov, 
DESY

XFEL wavefront propagation 
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Highlights: Prognostics

E. Fol, CERN

Outlier detection at CERN

find faulty BPMs:
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Highlights: Prognostics

E. Fol, CERN

Outlier detection at CERN

Correctly classified NO spike Correctly classified YES spike

G. Azzopardi, CERN

Distinguish true/false 
collimator events

find faulty BPMs:
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Highlights: Data Analysis

K-means to understand MBI structures

T. Boltz, KIT
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Highlights: Data Analysis

K-means to understand MBI structures

T. Boltz, KIT

Reconstructing FEL Pulses

+

XTCAV

X. Zhang, SLAC

5 orders of magnitude faster!



Predict interlock
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Highlights: Data Analysis

General data mining: Can we use ML to learn about our machines?

J. Snuverink, A. Adelmann

PSI cyclotron
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Future directions

Currently writing white paper to summarize first workshop
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Future directions

Then next workshop: March, 2019 in Switzerland!

Currently writing white paper to summarize first workshop
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Future directions

Thanks for listening and 
hope to see you at a future 

ML workshop!


