

Overview of the APS-U Project

Ryan Lindberg

on behalf of the APS-U team Argonne National Laboratory

2018 Workshop on Future Light Sources

The APS Upgrade in brief

The APS Upgrade is designed to provide orders-of-magnitude improvements in brightness, coherent flux, and nano-focused flux

Outline

- This presentation highlights some of the accelerator work
 - Lattice design and optimization
 - Mechanical layout
 - Magnet status
 - Injection systems status
 - Injector status
 - Tolerances and commissioning
 - Vibration and beam stabilization
 - Collective effects
 - Control of beam losses
- Several other talks in this workshop give a deeper dive
 - Superconducting undulators (J. Fuerst)
 - Ion effects (J. Calvey)
 - X-ray diagnostics (B. X. Yang)
 - Multi-bunch instabilities (R. Lindberg)

Lattice choice - hybrid 7-bend achromat

- After extensive study, chose hybrid 7-bend achromat¹ with 4 longitudinal-gradient dipoles and 3 transverse-gradient dipoles²
 - Provides two locations with larger dispersion, used for chromaticity correction
 - Phase separation between sextupole triplets is $\approx 3\pi$ in X and $\approx \pi$ in Y
- Sextupoles have 20-fold symmetry to allow for more knobs
- Conversion of three quadrupole families to reverse bends^{3,4} provided many benefits (see below)⁵

- 2: Initial hybrid 7-bend lattice was provided by ESRF.
- 3: J. Delahaye et al., PAC89, 1611.
- 4: A. Streun, NIM-A 737 (2014)
- 5: M. Borland et al., NAPAC 2016, 877.

Lattice optimization¹

- Linear lattice design iterated with magnet and vacuum systems designs
 - Magnet designers provide curves of integrated strength vs insertion length
 - Vacuum designers provide space requirements for bellows, absorbers, BPMs, etc.
- Tracking-based multi-objective genetic algorithm (MOGA) used for optimization
 - Includes various errors, vacuum chamber apertures, and effects of radiation damping and longitudinal motion
 - Directly optimizes quantities we care about
 - Touschek lifetime (from local momentum acceptance)
 - Dynamic acceptance (DA) area
 - DA smoothness
 - Momentum tune footprint
 - X-ray brightness at ~10 keV
- Went through several lattice versions, including
 - 90-pm large enough dynamic aperture to allow for accumulation²
 - 67-pm on-axis injection only, no accumulation³
 - 67-pm with high-beta insertion targeting accumulation with lower emittance⁴
 - 42-pm on-axis injection only, incorporates reverse bends⁵

3: M. Borland et al., IPAC2015, 1776.

4: Y. Sun et al., IPAC2015, 1803.

5: M. Borland et al., NAPAC2016, 877.

Reverse bends have numerous benefits

- Reverse bend design requires no additional magnets, but
 - − Allowed increasing dispersion by \sim 20% → weaker sextupoles
 - Much better Touschek lifetime with the same dynamic acceptance
 - 60% higher x-ray brightness, partly from improved beta functions at IDs
 - Simulations show no increase in difficulty of commissioning
- Attempts to push emittance even lower gave poor nonlinear dynamics and difficult magnets

The APS Upgrade parameters

Quantity	APS Now	APS MBA Timing Mode	APS MBA Brightness Mode	\mathbf{Units}
Beam Energy	7	6		GeV
Beam Current	100	200		${ m mA}$
Number of bunches	24	48	324	
Bunch Duration (rms)	34	104	88	\mathbf{ps}
Energy Spread (rms)	0.095	0.156	0.130	%
Bunch Spacing	153	77	11	\mathbf{ns}
Horizontal Emittance	3100	32	42	$pm \cdot rad$
Emittance Ratio	0.013	1	0.1	
Horizontal Beam Size (rms)	275	12.6	14.5	$\mu \mathrm{rad}$
Vertical Beam Size (rms)	11	7.7	2.8	$\mu \mathrm{rad}$
Betatron Tune	35.2, 19.27	95	5.1, 36.1	
Natural Chromaticity	-90, -43	-13	30, -122	

Every arc magnet type has been prototyped¹

- There will be total of 1321 magnets
 - Longitudinal-gradient dipoles 160
 - Transverse-gradient dipoles 120
 - Reverse-bend quadrupoles 240
 - Quadrupoles 400
 - Sextupoles 240
 - 8-pole fast correctors, skew quads 161
- Measurements in good agreement with expectations
- About half of the magnets have vanadium permendur pole tips to achieve required strength
- Contract for purchase of first 160 quadrupoles already placed

1: M. Jaski et al.

8-pole corrector (BNL)

Injection scheme¹

- Swap-out injection^{2,3} necessary to accommodate small DA:
 - one stored bunch is dumped, new bunch is put in its place in a single shot
 - use fast stripline kickers⁴, slightly tilted Lambertson septum⁵ for vertical-plane injection
- For 324-bunch mode, kickers need to be very fast (<20 ns)
 - Prototype stripline kicker, pulser tested to 30 kV (18 kV is required)
 - Meets timing requirements
- For 48-bunch mode, injector must provide high-charge bunches (16 nC)
 - Injector improvement program underway

4: M. Abliz et al., NAPAC16, 1231. 5: C.-Y. Yao et al., NAPAC16, 950.

APS-U injector improvements

- Plan to meet APS-U injection requirements through upgrades of existing injector complex.
- Injectors need to deliver up to three times design charge level.
- Have achieved 100% of maximum required charge for PAR, and 70% of required charge for Booster.
- Booster improvements: lattice and injection tuning, new BPMs and orbit correction, rf tuning, beam loading compensation...
- PAR improvements: rf system and orbit tuning, higher energy...
- R&D ongoing, guided by modeling and experiment.

	Present APS	Achieved	Goal**
Rep rate	2 Hz	1 Hz	1 Hz
PAR charge	2-4 nC*	20nC	20nC
Booster charge	2-4 nC*	12nC	17nC
SR charge	Accumulated		16nC
Charge stability (rms)	10%	10%	5%
BTS x emit.	87nm		60nm
BTS y emit.	?		16nm
SR energy	7 GeV		6 GeV

* Design charge is 6 nC** Timing mode

K. Harkay, CY. Yao, J. Calvey, and Injector Working Group.

Tolerances and stability¹

- Tolerances are specified based on several requirements
 - Ease of commissioning
 - Ease of startup after shutdowns
 - Need to control beam motion during user operation with orbit correction
 - Need to have sufficiently quiet conditions for beam studies
- One major requirement is keeping orbit stable within 10% of beam size
- Tolerance calculations take into account many frequency-dependent effects
 - Electrical noise, ground vibration, attenuation due to vacuum chamber, lattice amplification, orbit correction
- The resulting requirements are tough, but feasible

Vibrational requirements			
	X Y		
	(rms)	(rms)	
	1-100 Hz		
Girder vibration	20 nm	20 nm	
Quadrupole vibration	10 nm	10 nm	
Dipole roll vibration $-$ 0.2 μ rad			

CS	Orbit stability requirements			
	Plane	AC rms Motion (0.01-1000 Hz)		
	Horizontal Vertical	$1.3~\mu{ m m}$ $0.4~\mu{ m m}$	$\begin{array}{c} 0.25 \ \mu \mathrm{rad} \\ 0.17 \ \mu \mathrm{rad} \end{array}$	

Electrical requirements (rms)			
Magnet type	Requirement	Based on	
Correctors	$2 \cdot 10^{-4}$	Orbit stability	
Dipoles M3-M4	$2 \cdot 10^{-5}$	Orbit stability	
Dipoles M1-M2	$2.3 \cdot 10^{-5}$	Tune stability	
Quadrupoles	$2.5 \cdot 10^{-5}$	Tune stability	
Sextupoles	$2 \cdot 10^{-3}$	Tune stability	

Flastwissel was an income a seta (was a)

Commissioning simulation¹

- Commissioning simulation was developed to
 - Understand the likely performance of the machine after commissioning
 - Understand alignment and tolerances in relation to commissioning, performance
 - Assess the difficulty of commissioning within the 3-month commissioning window
- Commissioning simulation strives for high level of realism, including
 - Error generation
 - Trajectory correction
 - First orbit correction leading to stored beam
 - Final orbit correction and lattice correction
- Trajectory correction is complicated by weak correctors
 - Strength limit is 0.3 mrad (due to mechanical limitations), while 1 mm trajectory error in the strongest quad gives 2.3 mrad kick

Assumed rms error levels in commissioning simulations

Girder misalignment	$100~\mu{\rm m}$
Elements within girder	$30~\mu{\rm m}$
Dipole fractional strength error	$1 \cdot 10^{-3}$
Quadrupole fractional strength error	$1 \cdot 10^{-3}$
Dipole tilt	$0.4 \mathrm{mrad}$
Quadrupole tilt	$0.4 \mathrm{\ mrad}$
Sextupole tilt	$0.4 \mathrm{mrad}$
Corrector calibration error	5%
Initial BPM offset error	$500~\mu{\rm m}$
BPM calibration error	5%
BPM single-shot measurement noise	$30~\mu{\rm m}$
BPM orbit measurement noise	$0.1~\mu{ m m}$
BPM and corrector tilts	$1 \mathrm{mrad}$

1: V. Sajaev et al, IPAC2015, 553.

Commissioning simulation (2)

- Simulations are tracking-based, including
 - Physical apertures
 - Injection errors, static and variable
 - BPM shot-to-shot noise
- Simulations show
 - Zero chance of first turn without trajectory correction
 - Low chance of multi-turn capture after first-turn trajectory correction if sextupoles are on
 - Fast commissioning is possible with >95% success rate
- Simulations help establish alignment and magnet strength tolerances, corrector magnet strength limits, evaluate magnet support design
- Provides set of configurations for statistical assessment of post-commissioning performance
 - Emittance, lifetime, collective effects, injection efficiency, etc.

Ground and girder vibration study

- Ground motion grows very fast toward slow frequencies (PSD ~ 1/f⁴) but becomes coherent at large distances
- Lattice amplification factors of magnet displacement become small as ground motion becomes coherent
 - Thus, low-frequency ground motion tends not to result in beam motion
- Girder vibration can amplify ground vibration
 - Girder resonant deformation modes were calculated
 - Orbit amplification factors for each mode were calculated
 - Measured ground motion was used as a driver to calculate beam motion due to girder resonances
- Total expected orbit motion due to girder resonances is 200 nm in X and 80 nm in Y (no orbit correction)

Integrated beam stability R&D in existing ring¹

1: N. S. Sereno et al., IPAC15, 1167.

Beam stability

- Beam stability will rely in part on very fast orbit feedback
- Goal is to extend correction bandwidth to 1 kHz
- Prototype system with 22 kHz update rate tested in APS
 - 16 rf BPMs (Libera Brilliance+) and 2 photon BPMs (Libera Photon)
 - 8 correctors per plane, including 4/plane new fast power supplies
- Closed-loop bandwidth of 600-800 Hz, limited by existing corrector magnets
- RMS motion achieved in 0.01 1kHz band
 - Horizontal: 1.3-1.5 μm
 - Vertical: 0.4-0.5 μm

AC rms MotionPlane(0.01-1000 Hz)Horizontal $1.3 \ \mu \text{m}$ $0.25 \ \mu \text{rad}$ Vertical $0.4 \ \mu \text{m}$ $0.17 \ \mu \text{rad}$

Orbit stability requirements

Bunch lengthening system

- Single-cell superconducting 1.4 GHz passively-driven cavity will be used to lengthen the bunch to achieve longer lifetime
- Lifetime improves by a factor of 3 for 324 bunch mode
 - Detuning of 11 kHz maximizes lifetime, but bunch is split;
 14 kHz gives "normal" bunch w/15% lower lifetime
 - Lifetime improvement for 48 bunch mode is about 50% because the bunch is already lengthened by MWI
- R&D program demonstrated¹ 2 MV at 2 K
 - 1.25 MV is requried
- Cryovessel contract is placed

1. M. Kelly, S. H. Kim, ANL-PHY

Bunch profiles for 324-bunch mode

Bunch length including long. impedance

Multi-bunch instabilities

- Keeping 12 existing 352-MHz rf cavities, with their potentially troublesome HOMs
- Transverse planes are not a concern, because of strong coherent damping
- For longitudinal plane, get two-fold reduction in growth rates, ignoring higherharmonic cavity (HHC) for the moment

Quantity	APS ring	42pm ring	Ratio in growth rate
Number of cavities	16	12	0.63
Total current (mA)	150	200	1.33
Energy (GeV)	7	6	1.17
Momentum compaction	2.83×10^{-4}	3.96×10^{-5}	0.14
Synchrotron frequency (kHz)	2.1	0.56	3.8

- Not enough, since radiation damping is four-fold less!
- Simulations with the program clinchor¹ and estimated HOMs confirm this²
- Does higher-harmonic cavity (HHC) help or hurt?
 - Lower synchrotron tune will increase growth rates
 - Spread in synchrotron tune will decrease growth rates

1: L. Emery, PAC93, 3360.

2: L. Emery et al., IPAC2015, 1784.

HHC and multi-bunch feedback

- Multi-bunch tracking was performed with elegant¹ to understand this issue^{2,3}
 - Elegant and clinchor agree in absence of HHC
- Simulations include
 - 48 bunches, 10k particles per bunch
 - Beam-loading & main-cavity feedback⁴
 - Passive higher-harmonic cavity
 - Short-range longitudinal impedance⁵
 - Transverse and longitudinal feedback systems
- Conclusions:
 - Ordering of growth rates roughly agrees with expections from clinchor
 - Growth rates ~2-3x higher than clinchor estimates
 - HHC is not beneficial for MBI
 - 90% of cases were stabilized by LFB
 - 3-4 kV kick needed in transient conditions^{3,6}
 - E.g., accidental kicking out of one bunch during swap-out
 - Because of high growth rates, very low synchrotron tune, direct detection of energy offset works best
 - Standard phase-detection feedback does not work well.

1: M. Borland, APS LS-287, Sept. 2000.

- 2: L. Emery et al., IPAC2015, 1784.
- 3: M. Borland et al., ICAP2015, 61.
- 4: T. Berenc et al., IPAC2015, 540.
- 5: R. Lindberg et al., IPAC2015, 1825.
- 6: M. Borland et al., IPAC2015, 543.

Single bunch collective effects

We have developed a detailed impedance model to predict collective effects¹

- Sums resistive wall impedance with the geometric contribution computed via GdfidL² simulations of vacuum components including BPMs, photon absorbers, tapered transitions, etc.
- Impedance model is used to predict microwave instability, rf heating, and for many tracking studies including those of multi-bunch instabilities, beam loss, etc.
- Simulations with impedance predict that the APS-U is safely below the single-bunch instability limit, but that collective effects at injection must be controlled^{3,4}
 - Longitudinal phase-space mismatch of injected and stored beam results in longitudinal oscillations/structure which can generate large transverse wakefields
 - Transient transverse wakefields can drive oscillations, emittance growth, and particle loss
 - Nonlinear resonances of large-emittance injected beam exacerbates these problems
- Single bunch feedback can cure any transient instability and prevent beam loss

Pressure calculations and profiles

- CERN codes^{1,2} SYNRAD+ and MOLFLOW+ used to compute pressure around the ring for various amounts of beam conditioning³
 - Includes generation and scattering of synchrotron radiation, photon stimulated desorption of gasses, vacuum conductance, and localized/distributed pumping
 - Data used for analysis of ion instabilities and gas scattering

lons and guard bunches

- For 324-bunch mode, will need at least 2 gaps in the bunch train to clear ions
- Developed idea of "guard bunches" to reduce rf transients
- More detail in J. Calvey's talk

Example of 324-bunch fill with one double-charge guard bunch on either side of four two-bunch gaps.

Suppresses rf transients, reducing bunch-shape and lifetime variation.

4 gaps of 6 bunches

Beam losses and collimation

- With shorter lifetime and higher beam energy density, understanding and control of beam losses becomes more important
- Beam dumps needed for swap-out and whole-beam abort
- Collimation must deal with Touschek scattering, gas scattering, and injection losses
 - Touschek is expected to dominate
- All of these processes have been simulated in detail for APS-U

^{1:} S. Khan, EPAC94 (1192). 2: A. Xiao et al., PRSTAB 13, 074201.

Swap-out and whole-beam dumps¹

- Swap-out and whole-beam dumps can be damaged by a single bunch out of 48
 - Energy density is larger than for entire 100 mA APS beam
 - In APS, copper and tungsten dumps have been locally melted by beam impact
- For whole-beam aborts, need dumps in 5 consecutive sectors to protect IDs
 - Dumps will be damaged by beam, must have sacrificial surface
- For swap-out, fire a "decoherence prekicker" prior to swap out
 - Decreases energy density of dumped bunch ~100-fold
 - Simulations show only modest temperature increase (Pelegant+MARS)

Beam spot on swap-out dump

1. J. Dooling et al., TWIIS Workshop, August 2017, Berlin.

Beam spot on swap-out dump with decoherence prekicker

Summary

- Our overarching goal is a new machine that turns on easily with no surprises, which requires
 - Tight integration of physics, engineering, and planning
 - State-of-the-art simulations
- Engineering designs for many systems are well advanced, e.g.,
 - Several magnet orders already awarded
 - Harmonic cavity tested, meets voltage requirements
 - Swap-out kicker tested with beam
 - Full-sector mock-up of vacuum chamber
 - High-rate orbit feedback demonstrated
- Detailed design is documented in Preliminary Design Report
 - Available at https://www.aps.anl.gov/APS-Upgrade/Documents

Backup Slides

Beam losses - gas scattering^{1,2}

- Simulations are tracking based
 - Tracking of many particles scattered at many locations
 - Combined with gas pressure distribution gives loss rates
 - Also provides loss particle distribution for radiation physics analysis
- Show reasonable agreement with previous results

- Peak locations:
 - Vertical collimators
 - HSCU and HGSCU
 - Septum
- Peak locations:
 - Horizontal collimators
 - HGSCU

1: M. Borland, AOP-TN-2017-040 2: M. Borland, AOP-TN-2017-043

Beam losses - injection

- Injection simulations now include measured pulser waveforms, explicit timing and amplitude jitter of pulsed magnets, explicit phase jitter, computed stripline deflection map
- Helps set requirements on these quantities and on the incoming beam emittance
- 98% of cases have less than 1.1% loss

Beam losses - beam abort

- Beam aborts may be commanded for equipment or personnel protection
 - Muting rf is the most reliable way to abort
- Whole-beam dump(s) will be damaged
 - Energy density ~20 times that for APS
 - Must move the dump surface after abort
- Conclusions of modeling¹ for 100 ensembles:
 - With only one dump, likely to hit ID unless dump aperture is sharply reduced
 - Planned five dumps provide certainty that the beam will be lost on the beam dump
 - These dumps double as Touschek and inelastic scattering collimators

Longitudinal collective effects: bunch lengthening and energy spread increase

Longitudinal phase space at 4.2 mA/bunch is turbulent with fluctuations ~10% in energy spread and in the mean energy $\sim 10^{-4}$

Collective effects at injection

- Collective effects can reduce injection efficiency, even for on-axis injection⁺
 - Injection system errors will seed transverse instabilities by initial offsets up to 200 microns
 - Longitudinal phase-space mismatch of injected and stored beam results in longitudinal oscillations/structure which can generate large transverse wakefields
 - Transient transverse wakefields can drive oscillations, emittance growth, and particle loss

- Nonlinear resonances of the large-emittance injected beam exacerbates problem
- Improving the longitudinal phase-space mismatch can reduce the longitudinal tumbling and transient transverse instability
- Transverse feedback can cure the instability and prevent particle loss

† M. Borland, T. Berenc, L. Emery, R. Lindberg. Proc. ICAP,15, Shanghai, China, pp 61 (2015).

Better longitudinal matching can limit transient instability, and feedback can cure it

- Injected beam from booster has $\varepsilon_x \times \varepsilon_y = 60 \times 15 \text{ nm}, \sigma_t = 100 \text{ ps}, \sigma_\delta = 0.12\%$
- Simulations employ element-by-element tracking with HHC
 - "Ideally stretched" uses prescribed rf set to flatten potential ($\sigma_t = 51 \text{ ps}, \sigma_{\delta} = 0.126\%$)
 - "Overstretched" has short-range wakefield and a passive HHC that is tuned to maximize lifetime ($\sigma_t = 100 \text{ ps}, \sigma_{\delta} = 0.15\%$)
- Impedance is separated into 15 impedance elements per sector
- The transverse feedback is limited to 1 microradian maximum kick

Pressure profiles and ion trapping

(n Torr)

[>]ressure

10

0.

0.0

- CERN codes^{1,2} SYNRAD+ and MOLFLOW+ used to compute pressure around the ring for various amounts of beam conditioning³
 - Pressure is highest in the multiplets where there is no distributed pumping
 - Data used for analysis of ion instabilities and gas scattering
- An ion will be trapped at a given location in the lattice if its mass number is greater than $A^{\rm crit}$
 - Unfortunately, this also happens in the multiplets due to large beam size

S

100 A-hr

1000 A-hr

κ: 0.1

κ: 1.0

CO2

CO

СН₄

J. Calvey

1: R. Kersevan. Proc. PAC 1993, p. 3848.

- 2: M. Ady and R. Kersevan. Proc. IPAC 2014, p. 2348.
- 3: B. Stillwell, IPAC2017, 3590. Data courtesy J. Carter.

