The General Particle Tracer (GPT) code applied to the PITZ benchmark problem

Bas van der Geer Marieke de Loos Pulsar Physics The Netherlands www.pulsar.nl

- GPT tracks sample particles in time-domain
- Relativistic equations of motion

$$\frac{d \mathbf{p}}{dt} = q \cdot \left(\mathbf{E} + \frac{d \mathbf{r}}{dt} \times \mathbf{B} \right)$$
$$\frac{d \mathbf{r}}{dt} = \frac{c \mathbf{p}}{\sqrt{m^2 c^2 + \mathbf{p} \cdot \mathbf{p}}}$$

- Solved with 5th order embedded Runge Kutta, adaptive stepsize
- GPT can track ~10⁶ particles on a PC with 1 GB memory
- Challenges:
 - E(r,t), B(r,t)
 - Initial particle distribution

Initial particle distribution

GPT allows full flexibility in 7D (position, momentum, release time)

• Uniform, Gaussian, Linear, etc., distributions

Implemented by over 30 elements

Hammersley sequences and/or random

This benchmark

- Time: Uniform convoluted with gaussian
- Momentum: Isotropic 'half-sphere' 0.5 eV
- Position: Laser-profile from image

PITZ false-color laser profile

 GPT can read laser-image files in .bmp format setxydistbmp("image-file.bmp",[1/pixel-size])

Xrms=0.54 mm, Yrms=0.57 mm

GPT initial particle distribution

Electromagnetic fields

- External fields
 - Built-in (analytical) elements
 - Field-maps
 - User-defined expressions
- Space-charge
 - 2D/3D point-to-point
 - Multigrid Poisson (PIC)
- Radiation
 - FEL interaction
 - (Coherent) Synchrotron Radiation
 - Wakefields

Field-maps

Space-charge (3D mesh)

Multi-grid Poisson solver

- Key feature:
 - Anisotropic meshing to reduce number of empty nodes
- Main challenge
 - Stability
- Multi-grid solver
 - Developed by Dr. G. Pöplau
 Rostock University, Germany
 - Scales $\sim O(N^1)$ in CPU time
 - Select stability vs. speed
- Ongoing research
 - Boundary conditions
 - Meshing

DESY TTF gun at z=0.25 m, 200k particles.

Adaptive meshing

- Reduce 'wasted' CPU time in empty volume
 - Meshlines follow projected beam density
- Selectable 'adaptiveness' by enforcing a maximum difference between neighboring meshlines
 - Parameter to determine stability vs. speed
- Ongoing research to define optimal number of meshlines and adaptiveness as function of bunch parameters and desired final accuracy.

Benchmark results: Screen 2

Benchmark results: Screen 3

Phase-space: Screen1, Imain=324

Conclusion

Screens:

- Good agreement
- Swap X and Y?

Emittance (work in progress):

- Presented GPT simulations overestimate the emittance
 - Optimization desired: Maybe just phase-error
- 'Slice' effect
 - Depends strongly on head and tail of the bunch
- Emittance is significantly affected by non-uniform laser image