

Low Emittance Electron Guns Employing the LaB₆ Single Crystal Cathode

K. Kasamsook, H. Hama*, M. Kawai, F. Hinode, T. Mutoh, K. Nanbu, T. Tanaka, K. Akiyama, M. Yasuda

Beam Physics & Accelerator Science Group, Laboratory of Nuclear Science, Tohoku University Sendai, Japan

*) presenter Phone : +81-22-743-3432, Fax : +81-33-743-3402, e-mail : hama@lns.tohoku.ac.jp

LaB6Gun@FLS2006

1

Why LaB₆ Single Crystal Cathode ?

☑ High emission current

(Small cathode size creates low emittance beam) (Small cathode size may be better against the backbombardment effect in RF guns)

✓ Flat surface because of single crystal (Low intrinsic emittance)

✓ Long lifetime (This is true, but heater assembly is difficult)

High-Temperature Operation of LaB₆ Single Crystal

Single-Crystal LaB6 Cathode

¢ 1.78 mm	
-----------	--

ES-440		
CATHODE MATERIAL	Lanthanum Hexaboride (LaB _e) single crystal	
CATHODE SHAPE	Flat cylinder	
SIZE	0.070 in dia. x 0.011 in. thick, standard (1.78 mm dia. x 0.25 mm thick)	
HEATER	Refractory metal	
EMISSION AREA	0.0249 cm ²	
TYPICAL HEATING VOLTAGE/CURRENT	Approx. 1 V, 10 A (Voltage measured at cathode)	
CATHODE LOADING	Up to 30 A/cm ² High loadings result in reduced lifetime	
WORK FUNCTION	2.69 eV	
OPERATING TEMP	Approx. 1700 K to 1900 K	
ENERGY SPREAD	Approx. 0.4 eV	
LIFETIME	Varies with conditions/vacuum/heating current	
VACUUM LEVEL	10 ⁻⁷ torr or better, recommended	
POWER SUPPLY CAPABILITY	Voltage regulated power supply recommended, 2 V, 12 A	

LaB6Gun@FLS2006

Development of thermionic DC gun and RF gun

To extract maximum performance of LaB6, we have developed both DC gun and RF gun.

- DC gun -

Very low "high-voltage (~50kV)", no grid and compact.
Low-emittance.

To replace with old thermionic gun (ε_n ~ 200 π mm mrad).
 Smith-Parcel FEL and Teraherz FEL.

- RF gun -

✓Independently-tunable 2-cell gun.

✓Low-emittance.

Optimized for production of very short bunches (< 100 fs).
Super coherent THz ring (talk at Group-1 this afternoon).

Schematic Diagram of Low Emittance DC-gun

Structure of Compact DC-Gun

Bias Voltage Dependence of the Emittance I = 300 mA

Result of EGUN Simulation for Minimum Emittance

Why thermionic RF Gun ?

Simple ! No buncher. No high-voltage stage

Photo cathode RF gun hae been getting popular, while thermionic one is not well studied.

Back-bombardment effect can be reduced by introducing small size cathode and shot macropulse operation.

There seems to be a possibility to create very short bunches less than 100 fs, in addition to low emittance.

Thermionic RF Gun

Fig. 1. RF-gun cross-section and 3D-view.

Fig. 3. Rf-gun and x-magnet layout (schematic).

Fig. 2. Particle distribution in energy-time phase space for a single S-band bunch at the RF-gun exit with histogram. The units of the histogram are macroparticles (each representing 6.34×10^4 electrons) per picosecond.

Courtesy S. Rimjaem, H. Wiedemann et al., NIM A 533 (2004) 258-269

FDTD (Finite Difference Time Domain) Method as a 3-D Maxwell's equations solver

Cubic mapping (Lee cell)

Finite Difference Equation

First order of Taylor expansion of differential equation Error comes from 2nd order expansion Symplectic ! within 1 st order

Maxwell's eqs.
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 $\nabla \times \vec{B} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} + \mu_0 \vec{J}$

Example solution (E_x) of finite difference equation,

$$E_{x}^{n+1}\left(i+\frac{1}{2},j,k\right) = E_{x}^{n}\left(i+\frac{1}{2},j,k\right)$$

$$+ c^{2}\Delta t \left[\frac{B_{z}^{n+\frac{1}{2}}\left(i+\frac{1}{2},j+\frac{1}{2},k\right) - B_{z}^{n+\frac{1}{2}}\left(i+\frac{1}{2},j-\frac{1}{2},k\right)}{\Delta y} - \frac{B_{y}^{n+\frac{1}{2}}\left(i+\frac{1}{2},j,k+\frac{1}{2}\right) - B_{y}^{n+\frac{1}{2}}\left(i+\frac{1}{2},j,k-\frac{1}{2}\right)}{\Delta z}\right]$$

$$- \frac{\Delta t}{\varepsilon_{0}}J_{x}^{n+\frac{1}{2}}\left(i+\frac{1}{2},j,k\right)$$

 $\Delta x, \Delta y, \Delta z$; spatial step length Δt ; step time n; number of steps $(c \Delta t)^{-1} \ge \sqrt{\Delta x^{-2} + \Delta y^{-2} + \Delta z^{-2}}$ should be satisfied to avoid instability

0-mode is also excited at the beginning of power feed Frequency separation : ~ 7 MHz (0 - π modes)

ITC (Independently-Tubanle Cells) RF-Gun

Q1 = 13000, Q2 = 12500 (SUPERFISH)

18

3-D FDTD Cavity Analysis

LaB6Gun@FLS2006

Velocity Bunching-Like Effect

Electron equation of motion

$$\frac{d\vec{\beta}}{dt} = -\frac{\sqrt{1-\beta^2} e}{m_0 c} \left[\vec{E} + c \vec{\beta} \times \vec{B} - \left(\vec{E} \cdot \vec{\beta} \right) \vec{\beta} \right]$$

LaB6Gun@FLS2006

Beam Dynamics in Thermionic RF Gun

E1 = 25 MV/mE2 = 50 MV/m $\Delta\theta$ (cav₁-cav₂) = 18°

n + 0 cycles n + 0.25 cycles n + 0.5 cycles n + 0.75 cycles

Control of Final Longitudinal Phase Space $\Delta \theta = \psi_{cavity-1} - \psi_{cavity-1}$

LaB6Gun@FLS2006

Transverse Phase Space

Summary of Guns with LaB₆ Cathode

DC Gun:

Low "high-voltage" with short distance between wehnelt and anode and no-grid structure does not simply produce low emittance beam. Require a special bias voltage to manipulate the equi-potential line.

\Rightarrow 1.4 π mm mrad

ITC-RF Gun:

Longitudinal phase space can be manipulated by adjusting relative phase and E-field. Hope to obtain 100 fs bunchlength. Emittance is still lower but for low bunch charge (< 50 pC). => ~ 1 π mm mrad