

Design of the Thomson Source at SPARC/ PLASMONX for incoherent and coherent X-rays

Luca Serafini - INFN/MI - on behalf of SPARC & PLASMONX Team

• The PLASMON-X Project: a marriage between the SPARC high brightness electron beam and a high intensity laser beam

Design and acquisition of a 200 TW Ti:Sa laser system for Plasma and IFEL acceleration exp. and a Thomson Source for monochromatic X-rays

- The PLASMON-X Project: a marriage between the SPARC high brightness electron beam and a high intensity laser beam Design and acquisition of a 200 TW Ti:Sa laser system for Plasma and IFEL acceleration exp. and a Thomson Source for monochromatic X-rays
- Coherent X-Rays at 1 Å from Thomson Sources as classical SASE-FELs or Quantum FELs (see also Maroli's and Piovella's talks in WG3)

• Coherent X-Rays at 1 Å from Thomson Sources as classical SASE-FELs or Quantum FELs (see also Maroli's and Piovella's talks in WG3)

(PLasma Acceleration at Sparc & MONochromatic X-rays) IS BASED ON THE MARRIAGE BETWEEN:

High Brightness Electron Beams (from 10's fs to a few ps bunch length)

High Intensity Laser Beams (30-100 fs pulses)

$$B_n \equiv \frac{cQ_b}{\sigma_z \varepsilon_{nx} \varepsilon_{ny}} > 10^{15} \left[\frac{A}{m^2 rad^2} \right]$$

$$I > 10^{19} \left| \frac{W}{cm^2} \right|$$

IS THE FIRST INGREDIENT

Under INFN responsibility

(see also Daniele Filippetto's talk in WG4)

Únder ENEA responsibility

IS THE FIRST INGREDIENT

Under INFN responsibility

(see also Daniele Filippetto's talk in WG4)

GOALS

Generation of 30-150 MeV e⁻ beams $(Q, \sigma_t, \varepsilon_n, \Delta \gamma / \gamma)$ Phase 1) 1 nC, 3 ps, 1 µm, 10⁻³ Phase 2) 1 nC, 300 fs, 2 µm, 2·10⁻³ PLASMONX) 20 pC, 60 fs, 0.3 µm, 2·10⁻³

Under ENEA

responsibility

Frascati Laser for Acceleration and Multidisciplinary Experiments (FLAME) SECOND INGREDIENT

LWFA with **external injection** + Thomson scattering

Nd:YVO 5W 532nm TEM00 To laser photoinjector I st Amplifier	2 nd Amplifier	Amplifier VBET 300mJ 532m			
Ti:Sa Oscillator Iofs TEM00 FR BS M PC E-InJ	SomJ 532nm SomJ 532nm SomJ 532nm Com E-ImJ It 300m E	6ns 10Hz 1:Sa 8mm M E-30mJ E-15n 1: 300x PS 41, 300	To diagnostics		
Туре	Wavelength	Delivered	Duration	Contrast	
		energy			
Phase 1	0.8 micron	5J	50fs	>106	
CPA Ti:Sa					
Phase 2	0.8 micron	5J	30fs	>108	
CPA Ti:Sa					
with OPCPA					
A Apodizer AL Achromatic lens BET Beam Expander Telescope VBET BBO Nonlinear crystal Ti:Sa Active Med VSF Vacuum Spatial Filter SF Spatial I	BS Beam Splitter GR Grating M Vacuum Beam Expander Telescope SPS single Pulse Su dium FR Faraday Rotator GV Valve PC Pocke Filter OTP Optical thin plate OW Optical w	Mirror elector els Cell vindow	Oil-free vacuum pump		

Schematic layout

INFN

 $Q = 20 \, pC$ \tilde{c}

ICFA FLS-2006 Workshop - DESY, May 18th 2006. Ferrario, ICFA LBI-LPA 2005 Workshop, Taipei

ICFA FLS-2006 Workshop - DESY, May 18th 2006

C. Vaccarezza et al., EPAC-04

beam energy distribution at start/end of the beam line

start

end

60 fs bunch (initially uncompressed) -> 10 fs with RF compression, i.e. by combining velocity bunching and bunch-slicing

Experimental set-up for the generation of tunable X-ray radiation via Thomson scattering of optical photons by relativistic electron bunches

e-

$$v_{T} = v_{0} \frac{1 - \beta \cos \alpha_{L}}{1 - \beta \cos \theta} \approx v_{0} \frac{4\gamma^{2}}{1 + \theta^{2}\gamma^{2}} \approx 4\gamma^{2}v_{0}$$

for $\alpha_{L} = \pi$ and $\theta <<1$ or $\theta = 0$

e⁻ (1 GeV);
$$\lambda_0 = 1 \mu m$$
, $E_0 = 1.24 eV$ $\lambda_T = 6 \times 10^{-8} \mu m$, $E_T = 20 MeV$

e⁻ (200 MeV);
$$\lambda_0 = 1 \mu m$$
, $E_0 = 1.24 eV$
 $E_T = 800 \text{ KeV}$

 $\lambda_{\rm T}$ =1.56 x10⁻⁶µm,

(29 MeV); λ_0 =0.8µm, E_0=1.5 eV λ_T =0.5 x10⁻⁴µm, E_T=20 KeV

Angular and spectral distribution of the TS radiation in the case of an unguided 3 ps laser pulse (12.5 µm beam waist)

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

ICFA FI

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Brilliance of X-ray radiation sources

SASE-FELs will allow an unprecedented upgrade in Source Brilliance

stituto Nazionale li Fisica Nucleare

Covering from the VUV to the 1 Å X-ray spectral range: **new Research Frontiers**

Compact Thomson Sources extend SR to hard X-ray range allowing Advanced Radiological Imaging **inside** Hospitals

FEL resonance condition

(magnetostatic wiggler)

Example : for $\lambda = 1A$, $\lambda_w = 1cm$, E = 3.5GeV

$$\lambda = \lambda_{pump} \frac{\left(1 + a_w^2\right)}{4\gamma^2}$$

(electromagnetic wiggler)

Example : for $\lambda = 1A$, $\lambda_{pump} = 1\mu m$, E = 25MeV

Toward Coherent X-rays: exploring coherent emission mechanisms (FEL-like) in Thomson Sources

COLLECTIVE EFFECTS IN THE THOMSON BACK-SCATTERING BETWEEN A LASER PULSE AND A RELATIVISTIC ELECTRON BEAM

A. Bacci ,L. Serafini INFN-Sezione di Milano, Via Celoria,16, 20133 Milano (Italy) C. Maroli, V. Petrillo Dipartimento di Fisica dell'Università di Milano e INFN-Sezione di Milano, Via Celoria,16, 20133 Milano (Italy) M. Ferrario INFN-LNF, Via Fermi 40, 00044 Frascati (RM), Italy

FEL-Conf. 2005

Conditions to operate a Thomson Source in FEL mode $\lambda_R = \lambda \frac{(1 + a_0^2)}{4\gamma^2}$

Conditions to operate a Thomson Source in FEL mode $\lambda_R = \lambda \frac{(1 + a_0^2)}{4\alpha^2}$

Conditions to operate a Thomson Source in FEL mode $\lambda_R = \lambda \frac{(1 + a_0^2)}{4\alpha^2}$

 $+a_0^2$

Conditions to operate a Thomson Source in FEL mode $\lambda_R = \lambda$ -

$$\begin{array}{ll} \textbf{Laser} & a_0 = 8.5 \cdot 10^{-6} \frac{\lambda \sqrt{P}}{R_0} & Z_0 = \frac{4 \pi R_0^2}{\lambda} & \textbf{e-beam} & \sigma_0 = \sqrt{\frac{\varepsilon_n \beta_0}{\gamma}} \\ \textbf{FEL} & \lambda_R = \lambda \frac{\left(1 + a_0^2\right)}{4\gamma^2} & \rho = \frac{10^{-2}}{\gamma} \sqrt[3]{I\lambda^4 P} / \sigma_0^4 & L_g = \frac{\lambda}{4 \pi \rho} & \frac{\Delta \lambda_R}{\lambda_R} = \rho \end{array}$$

Conditions to operate a Thomson Source in FEL mode

Laser length $c \tau = 10L_g$

$$R_0 = 2\sigma_0 \quad c \tau \le 2Z_0$$

Conditions to operate a Thomson Source in FEL mode

Generalized Pellegrini criterion

$$\varepsilon_n \leq \sqrt{\alpha} \sqrt{\frac{Z_R}{L_G}} \frac{\lambda_R \gamma}{2\sqrt{2}\pi}$$

LCLS $\lambda_R \cong 1$ Angstrom **FEL-Thomson**

$$\gamma = 3 \cdot 10^4$$
$$\lambda_w = 2.5 \ cm$$
$$L_g \cong Z_R \cong 10 \ m$$
$$\mathcal{E}_n < \frac{3 \cdot 10^4 10^{-10}}{4 \pi} \cong 0.25 \ \mu m$$

 $\gamma = 30$ $\lambda = 1 \ \mu m$ $L_g \cong 100 \ \mu m \ ; \ Z_R \cong 10 \ m$ $\varepsilon_n < \sqrt{10^5} \frac{30 \cdot 10^{-10}}{2\sqrt{2}\pi} \cong 0.11 \ \mu m$

Satisfying all conditions above implies:

 $\gamma = 0.068 \quad \sqrt[3]{\frac{I}{\Delta^2}}$ $\lambda_R = 120\lambda \quad \sqrt[3]{\frac{\Delta^4}{I^2}}$ $L_G = 0.44 \lambda / \Delta$ $\varepsilon_n = \frac{\lambda}{5.62}$ $\overline{\rho} = 6 \cdot 10^{11} \lambda \sqrt[3]{\frac{\Delta^5}{I}}$ $U = 47 \lambda / \Delta^2$ $\tau = 1.5 \cdot 10^{-8} \lambda / \Delta$ $P = 3.1 \cdot 10^{9} / \Delta$ $Z_0 = 2.2\lambda/\Delta$ $\rho = 0.18\Delta$ $a_0 = 1.12$ $\beta_0 = 0.018\lambda \sqrt[3]{\frac{I}{\Lambda^5}}$ $\sigma_0 = 0.21 \lambda / \sqrt{\Delta}$

For the case of a Ti:Sa laser we derive:

Setting $\Delta = 0.5$ % and I = 1700 AClassical SASE

$\varepsilon_n = 0.14 \ \mu m$	$\gamma = 28$	$L_G = 70 \ \mu m$
U = 1.5 J	$\lambda_R = 5.7$ Angstrom	$\overline{\rho} = 6$
$P = 3.1 \ TW$	$ au = 2.4 \ ps$	$Z_0 = 0.36 mm$
$a_0 = 1.12$	$\rho = 9 \cdot 10^{-4}$	$\beta_0 = 1.14 mm$
	$\sigma_0 = 2.4 \ \mu m$	

Setti	ng $\Delta = 0.1$ % and $I = 2500$	$\mathbf{O}\mathbf{A}$		
Quantum FEL				
$c_n = 0.14 \ \mu m$	γ=93	$L_G = 350 \ \mu m$		
U = 37 J	$\lambda_R = 0.52$ Angstrom	$\overline{\rho} = 0.35$		
$P = 0.6 \ TW$	$\tau = 12 \ ps$	$Z_0 = 1.8 mm$		
$a_0 = 1.12$	$ ho = 1.8 \cdot 10^{-4}$	$\beta_0 = 18.8 mm$		
	$\sigma_0 = 5.4 \ \mu m$			

up to $2 \cdot 10^{10}$ photons per pulse @ 6 keV, emitted in a coherent diffraction limited radiation beam, $\Delta \theta$ =3 µrad (cmp. 10⁹ ph/pulse in $\Delta \theta$ =3 mrad of incoherent Thomson radiation)

Brilliance of X-ray radiation sources

Compact Thomson Sources extend SR to hard X-ray range allowing Advanced Radiological Imaging **inside** Hospitals

INFN

Coherent Thomson Sources will push the achievable brilliance if laser pulses with $\Delta I/I < \Delta \omega / \omega = 2 \cdot 10^{-3}$ will be made available

Gev-class IFELdesign: X

- SPARC
- Application of IFEL scheme as 4th generation light source driver
- Compact-size accelerator
- ESASE benefits intrinsic
 - Exponential gain length reduction
 - Absolute timing synchronization with external laser
 - Control of x-ray radiation pulse envelope
- Advanced Accelerator driven light source
- Design exercise aimed to extend the energy and wavelength reach of planned SPARC linac

Initial <i>e</i> -beam energy (γ value)	210 MeV
Initial e-beam intrinsic energy spread	0.1% (1σ)
Initial e-beam current	1 kA
Laser wavelength	800 nm
Laser peak power	20 TW
Nominal length of wiggler, L_{w}	200 cm
	•

ICFA FLS-2Phase distributishop - DESY, May 18th 2006

- Sending such a beam into an undulator
 - FEL radiation @ λ = 3 nm (water window). Peak power 1 GW in 300 attoseconds
- Among laser accelerators, the IFEL offers best control of the longitudinal phase space.
- Preserving ultrashort pulse structure in the radiation output requires some precautions in the design of the FEL amplifier (slippage problems) but can be done.
- Path towards ultrashort probe beams pass through fa synergy between laser and accelerator worlds.

DZ_[mm]

TW acceleration structure: Ez=2.70 MV/m, Φi=85°

dedicated x-band structure : Ez=30 MV/m Φi=275°

The results seem to be good especially for the very low longitudinal energy spread. Keeping in consideration that the beta in the focal spot is about 5 mm, the principal limitation is due to bunch length.

0

-0.02

-5

0

z mm

5

I

Triplet configuration for the final focus of the Permanents magnets (1nC – Bunch) A - rase

Istituto Nazionale di Fisica Nucleare

Triplet configuration: Ideal +1 -2 +1 Q-length = 1.46 cm Q-Gradient = 300 T/m

t ps

ICFA FLS-2006 Workshop - DESY, May 18th 2006

12,15

12,20

12,10

z [m]

0,00

12,00

12,05

5

12,25

ad

 σ -x = 18 μ m

Triplet configuration for the final focus ermanents magnets (1nC – Bunch) INFN Istituto Nazionale di Fisica Nucleare z = 12.06 m

ICFA FLS-2006 Workshop - DESY, May 18th 2006

 10^{-3}

0

 -10^{-3}

-10

 $\Delta p/p$

1 nC, 10 ps, $\varepsilon_n=1 \ \mu m$

Two additional beam lines at SPARC for plasma acceleration and monochromatic X-ray beams

A 3D Model View of the buildings from outside

Schedule of the planned PLASMONX activity

Activit y/Year	2004	2005	2006	2007	2008	2009
Set up c luster for par allel computing						
Test experiments @ CEA -Saclay						
Development of m.w . PIC codes						
Mod elling of acceleration schemes						
Mod elling of T.S.						
Design of Laser System						
Set up LASE R LABORATORY at LNF						
Set up Phase 1: 30fs, 0.1TW			м			
Set up I II am plification stage						
Development of the OPCP A am plifier s						
Installation of laser dia gnostics	_					
Pha se 2: 1TW compression test				М		
IV am plification stage	_					
Pha se 3: 100 TW c ompression test					м	
Self injection LW FA experiments						
External injection LWFA test						м
Setup additional beam-line at LNF						
Set up la ser beam transport to LI NAC						
Set up laser beam-electron bunch interaction						
Synchronization R&D and setup						
Thom son source test						М
TS beam users (MA MB O etc.)						

2.5 Meuro bid is ongoing for the FLAME laser

QFEL experim. under study with PLASMONX facility

 w_0

With these parameters,
$$\rho = \frac{1}{\gamma_0} \left(\frac{\omega_b^2 a_{L0}^2}{16\omega_L^2} \right)^{\frac{1}{3}} = 7 \ 10^{-4}$$
.
The gain lenth L_g=110 micron, and the system is classic
 $\mathbf{A}_L(\underline{r}, t) = \frac{a_{L0}}{\sqrt{2}} (g(\underline{r}, t)e^{-t(k_L z + \omega_L t)}\hat{\mathbf{e}} + cc) + O(\frac{\lambda_L}{w_0})$
with
 $\hat{\mathbf{e}} = (\mathbf{e}_x + i\mathbf{e}_y)/\sqrt{2}$
And with envelope

$$g(\underline{r},t) = \Phi(z+ct) \frac{1+i\frac{z}{z_0}}{1+\frac{z^2}{z_0^2}} \exp \left[-4\frac{x^2+y^2}{w_0^2(1+\frac{z^2}{z_0^2})} -4i\frac{x^2+y^2}{w_0^2(\frac{z}{z_0}+\frac{z_0}{z})} \right]$$

The 3 dimensional collective equations that describes the collective effects are similar to the FEL equation with the SVEA approximation

$$\begin{split} &\frac{d}{d\overline{t}}\overline{\mathbf{r}}_{j}(\overline{t}) = \rho \frac{\mathbf{P}_{j}(\overline{t})}{\overline{\gamma}_{j}(\overline{t})} \\ &\frac{d}{d\overline{t}}P_{jz}(\overline{t}) = -\frac{\overline{a}_{L0}^{2}}{2\rho\gamma_{0}^{2}}\frac{1}{\overline{\gamma}_{j}}\left[\frac{\partial}{\partial\overline{z}}|g|^{2}\right]_{\overline{\mathbf{x}}=\overline{\mathbf{r}}_{j}} - \\ &\frac{2}{\overline{\gamma}_{j}}\operatorname{Re} al\left[(g^{*}\overline{A})_{\overline{\mathbf{x}}=\overline{\mathbf{r}}_{j}}e^{i\theta_{j}(\overline{t})}\right] + \dots \\ &\frac{d}{d\overline{t}}\mathbf{P}_{j\perp}(\overline{t}) = -\frac{\overline{a}_{L0}^{2}}{2\rho\gamma_{0}^{2}}\frac{1}{\overline{\gamma}_{j}}\left[\overline{\nabla}_{\perp}|g|^{2}\right]_{\overline{\mathbf{x}}=\overline{\mathbf{r}}_{j}} \\ &-\frac{4\frac{k_{L}}{k}\rho}{1+\frac{k_{L}}{k}}\frac{1}{\overline{\gamma}_{j}}\operatorname{Im}\left[(\nabla_{\perp}(g^{*}\overline{A}))_{\overline{\mathbf{x}}=\overline{\mathbf{r}}_{j}}e^{i\theta_{j}(\overline{t})}\right] + \dots \\ &(\frac{\partial}{\partial\overline{t}}+\frac{\partial}{\partial\overline{z}})\overline{A}(\overline{\mathbf{x}},\overline{t}) - i\frac{k_{L}}{k}\rho\overline{\nabla}_{\perp}^{2}\overline{A} = b \end{split}$$