

Charge:

Address and try to answer a list of critical questions for ERL light sources.

Session leaders can approach each question by means of

- (a) (Very) short presentations
- (b) Open discussions
- (c) Panel discussions
- (d) Distribution of problems to be solved, etc.

During the course of the workshop, the session leaders will formulate an answer to their question. This might require work and meetings of experts outside the workshop sessions.

Furthermore extra discussion time can be scheduled at the end of the second day. Some questions might require computer simulations, and (windos/linux) access is available in the meeting room.

2

Question to be addressed (Tuesday)

- (1) Overview of critical ERL issues
- (2) Project overviews
 - (a) JLAB
 - (b) Cornell
 - (c) Daresbury
 - (d) KEK / JAEA
- (3) Particle transport
 - (a) Are there optimal schemes to minimize bunch length and energy spread?
 - (b) What is the optimal injector / linac merger design?
 - (c) What should start to end simulations include?
 - (d) What are beam abort strategies and beam loss tolerances?
- (4) What are diagnostic needs?

CHESS & LEPP

3

Promise: High average laser power (~ 100 kW) High overall system efficiency Reduced beam dump activation

Reality: JLab 10kW IR FEL and 1 kW UV FEL JAERI 2.3kW IR FEL Novosibirsk NRF 180MHz recuperator

4

Georg.Hoffstaettter@Cornell.edu plans for WG2 on ERLs of FLS06

16 May 2006

Energy Recovery Linac Prototype

5

Split Linac Bunch Flattening

6

CHESS & LEP

Georg.Hoffstaettter@Cornell.edu plans for V

plans for WG2 on ERLs of FLS06

16 May 2006

CSR microbunching

Emittance with CSR and nonlinear optics

- (5) What are vacuum and aperture needs for ERL light sources?
- (6) What are advantages and limits of multi-turn ERLs?
- (7) RF issues
 - (a) What is the maximum Q_L possible, and what stabilization is needed?
 - (b) What are optimal cavity parameters?
- (8) What are good beam stabilization strategies and their limits?
- (9) What are undulator issues that are specific to ERLs?
- (10) What issues are critical for all proposed ERLs?

Reports (drafts) for each question should be finished by Friday morning !

Ion are quickly produced due to high beam density

Ion	$\sigma_{col}, 10 \mathrm{MeV}$	$\sigma_{col}, 5 \text{GeV}$	$\tau_{col}, 5 \text{GeV}$
H_2	$2.0 \cdot 10^{-23} \mathrm{m}^2$	$3.1 \cdot 10^{-23} \mathrm{m}^2$	$5.6\mathrm{s}$
CO	$1.0 \cdot 10^{-22} \mathrm{m}^2$	$1.9 \cdot 10^{-22} \mathrm{m}^2$	92.7s
CH_4	$1.2 \cdot 10^{-22} \mathrm{m}^2$	$2.0 \cdot 10^{-22} \mathrm{m}^2$	85.2s

- Ion accumulate in the beam potential. Since the beam is very narrow, ions produce an extremely steep potential – they have to be eliminated.
- Conventional ion clearing techniques can most likely not be used:
 - 1) Long clearing gaps have transient RF effects in the ERL.
 - 2) Short clearing gaps have transient effects in injector and gun.
- DC fields of about 150kV/m have to be applied to appropriate places of the along the accelerator, without disturbing the electron beam.

- $\beta_x = 1.4 \text{ m}, \beta_y = 0.9 \text{ m}$ at **ID** position of section nS $\rightarrow \sigma_x = 84 \ \mu\text{m}, \sigma_y = 7 \ \mu\text{m}$ assuming emittance coupling $\epsilon_y/\epsilon_x = 1 \ \%$
- With stability requirement $\Delta \sigma = 0.1 \times \sigma \rightarrow$

	Requirement: Orbit jitter < 1 μm at insertion devices						
	Noise Scenario from 1998 before SLS construction						
	Worst case Noise estimate	30	60	Hz			
	Seismic measurements	300	30	nm			
	Damping by hall's concrete slab	neglected					
	Girder resonance max amplification	< 10	< 10				
	Closed orbit amplification hor./vert.	8/5	25/5				
\rightarrow	Maximum Orbit jitter hor./vert	24/15	7.5/1.5	μm			
	Attenuation by orbit feedback	-55	-35	dB			
\rightarrow	Maximum Orbit jitter hor. /vert.	40/30	130/30	nm			

	Short-Term Goals			Long-Term Goals		
Modes:	(A) Flux	(B) High- Coherence	(C) Short- Pulse	(D) Ultra High- Coherence	(E) Ultra Short- Pulse	Units
Energy	5	5	5	5	5	GeV
Current	100	25	1	100	1	mA
Bunch charge	77	19	1000	77	10000	pC
Repetition rate	1300	1300	1	1300	0.1	MHz
Norm. emittance	0.3	0.08	5.0	0.06	5.0	mm mrad
Geom. emittance	31	8.2	511	5.1	511	pm
Rms bunch length	2000	2000	50	2000	20	fs
Relative energy spread	2 10-4	2 10-4	3 10-3	2 10-4	3 10-3	
Beam power	500	125	5	500	5	MW
Beam loss	< 1	< 1	< 1	< 1	< 1	micro A

Georg.Hoffstaettter@Cornell.edu

plans for WG2 on ERLs of FLS06

16 May 2006

