

Seeding and harmonic generation in Free Electron Lasers

37th ICFA Beam Dynamics Workshop Future Light Sources 15 – 19 May 2006 DESY, Hamburg, Germany

May 17th 2006

Outline

- Harmonic Generation in FELs
- Cascaded configurations
- Multiple stage cascade and the energy budget The Fresh bunch injection tecnique
- Superradiant cascade & Harmonic cascade
- Overview of proposed and existing projects
- Seeding with Ti:Sa harmonics generated in gas
- Conclusions

Single pass Free Electron Laser

A close look at the bunching process

Expanded Movie file: beam_bunching_2

Cascaded FEL configuration

Harmonic Saturation

Saturation of the harmonics signal is induced by overbunching at the first harmonic

Cascaded FEL configuration

Optical klystron operating on a higher order harmonic in the second section

I.Boscolo, V. Stagno, Il Nuovo Cimento 58, 271 (1980)

R. Bonifacio et al. NIM A296, 787 (1990)

L. H. Yu, PRA 44, 5178 (1991)

... and several other authors

Courtesy of I. Ben Zvi

The HGHG Experiment

Electron Beam Input Parameters: E= 40 MeV

 $\varepsilon_n = 4\pi$ mm-mrad d $\gamma/\gamma = 0.043\%$ I = 110A $\tau_e = 4$ ps

The HGHG Experiment

Courtesy of J.B. Murphy

NSLS SDL

300 MeV S-Band Linac

BNL Photoinjector IV

Seeding @ 800 nm

VOLUME 91, NUMBER 7

PHYSICAL REVIEW LETTERS

week ending 15 AUGUST 2003

First Ultraviolet High-Gain Harmonic-Generation Free-Electron Laser

L. H. Yu,* L. DiMauro, A. Doyuran, W. S. Graves,[†] E. D. Johnson, R. Heese, S. Krinsky, H. Loos, J. B. Murphy, G. Rakowsky, J. Rose, T. Shaftan, B. Sheehy, J. Skaritka, X. J. Wang, and Z. Wu

Wavelength (nm)

Ultra-Violet FEL Operation

SASE & Seeded pulse & spectra

86

 1.10^{-10}

0

5

z (m)

10 15

90

88

wavelength (nm)

Seeded

SASE

240

250

260

270

wavelength (nm)

280

290

Seeded pulse & spectra, movie file: seed266.avi

-287.03

86

-143.52

0

z (um)

88

wavelength (nm)

143.52

90

287.03

 1.10^{-8}

1.10⁻⁹

 1.10^{-10}

1.10⁻¹¹

0 5 10 1.5

z (m)

-287.03

Spectrum (a.u.)

240 250 260 270

-143.52

0

z (um)

wavelength (nm)

143.52

280 290

287.03

1 st harmonic 0.5 -287.03 -143.52 143.52 287.03 0 z (um) 240 250 260 270 280 290 wavelength (nm)

- Reduced intrinsic fluctuations
- Coherence properties (transverse/longitudinal) determined by the seed
- Narrow bandwidth limited by e-bunch length
- Coherent techniques, such as CPA and compression
- Wavelength tuning by bunch compression (T.Shaftan, L. H Yu Phys. Rev. E 71, 046501 (2005))

Multiple stage cascade and the energy spread budget

The Fresh bunch injection technique

L. H. Yu, I. Ben-Zvi NIM A393 (1997) 96

Short pulses and the Superradiant regime

Distance along the e-bunch

R. Bonifacio, B. W. J. Mc Neil, P. Pierini, PRA 40, 4467 (1989) N. Piovella, Opt. Comm. 83, 92 (1991)

2° order FROG trace of the superradiant pulse, reconstructed from 1D PERSEO simulation

U.S. DEPARTMENT OF ENERGY

Courtesy of J.B. Murphy, X. Wang, T. Watanabe

SUPERRADIANT PULSE reconstructed from measured FROG traces

Phase spaces corresponding to different parts of the superradiant pulse

Movie file: particlesvs bunch.avi

Evolution of a superradiant pulse in a cascade

FEL cascade in SRmode

TABLE II: Radiation seed and electron beam parameters					
Electron beam energy	$800 { m MeV}$				
Current	1 KA				
Emittance	1 mm-mrad				
Average β	4 m				
$\delta \gamma / \gamma$	$5 \cdot 10^{-4}$				
Seed wavelength λ	266 nm				
Seed power	$41 \mathrm{MW}$				
Seed pulse width (rms)	$15 \mathrm{~fs}$				

TABLE III: Parameters of the FEL Cascade.								
Cascade stage	1	2	3	4	5			
$\rho \ (\cdot 10^{-3})$	11	5.8	3.3	1.9	1.3			
K	4.9	3.92	2.88	1.8	1.2			
Period $\lambda_w(cm)$	10	5	2.8	1.8	1.4			
Resonant Wavelength λ (nm)	-266	89	-29.5	9.8	4.9			
Peak power (GW)	1.2	4.8	7	2.5	3.1			
Pulse energy (μJ)	63	72	35	4.6	5.3			
Pulse width (fwhm - fs)	- 53	8.4	3.4	1.5	1.4			
Undulator periods	60	100	180	200	480			

L. Giannessi, P. Musumeci, S. Spampinati J. Appl. Phys 2005

Harmonic Cascaded FEL

L. Giannessi, P. Musumeci, in proc. 2005 ICFA Erice

Existing and Proposed seeded HG FELs

Project	λ_{FEL} ,	P.len.	Accel.
	(nm)	(fs)	type
• 4GLS	IR-XUV		ERL
• ARC-EN-CIEL	200-0.82	~20	SC-Linac
• BESSY	51-1	~20	ERL
• DESY	6-0.1	~100	SC-Linac
• FERMI	100-10	~100	Linac
• MAX-4	260-10	~50	Linac
• SparC	400 - 66	~50-100	Linac
• SDL (BNL)	800-200	600-80	Linac
• LUX (LLBL)	240-1	200-10	ERL
• MIT-BATES	100-0.3	50/1	Linac
SDUV-FEL(Shanghai)	264.88		Linac
• SCSS (Phase 1)	80-40		Linac

Stability

A seeded FEL is not affected by intrinsic fluctuations as SASE BUT

Any change in the input parameters as seed power, beam energy, current, beam quality (slice-full), alignment, time jitters, induces output fluctuations

The fluctuations are amplified in the multi stage configuration.

The cross is commonly found on top of mountains. Nobody is buried there.

Seeding with high order harmonics generated in gas

Arc En Ciel
4GLS
SCSS
SPARC/X

Seeding with HHG generated in gas

Simple model of an HHG pulse

$$E(t) = a(z - ct)e^{i(\omega t - kz)} \qquad \omega = \frac{2\pi c}{\lambda},$$

 $\sigma_L = 30 fs$ $\sigma_s = 100 as$ Phase shift between different peaks

 $\lambda = 114$ nm

$$a(z) = |a(z)| \exp(i\phi(z))$$

$$\phi(z) = \sum_{k} s_{j} \sin(kz) + c_{j} \cos(kz)$$

Harmonics Spectrum

(www.sparc.it)

Simulation wavelength

Movie of pulse amplification in a FEL amplifier. Movie file: Sparxino -114nm - seeded - narrow - time & spectrum - 3.avi Observe the pulse "cleaning" in fig 3 and the third harmonic that follows in fig 4

3

SCSS Seeding with harmonics generated in gas

Guillaume Lambert, Michel Bougeard, Willem Boutu, Bertrand Carré, David Garzella, Marie Labat (CEA, Gif-sur-Yvette), Toru Hara, Hideo Kitamura, Tsumoru Shintake (RIKEN Spring-8 Harima, Hyogo), Oleg Chubar, Marie-Emmanuelle Couprie (SOLEIL, Gif-sur-Yvette)

Service des Photons, Atomes et Molécules Saclay, DSM-DRECAM CEA O. Tcherbakoff, M. Labat, G. Lambert, D. Garzella, M.E. Couprie, M. Bougeard, P. Breger, P. Monchicourt, H. Merdji, P. Salières, B. Carré

Conclusions

- Computing and s2e simulations are precious tools in exploring new possibilities and in the design of new facilities
- New ideas are coming: Mantain flexibility in machine design
- The experiments on seeded FELs combined to harmonic generation have provided confirmations to theory and deeper understanding on the FEL amplification process (credit to BNL)
- Several new experiments are required and some are foreseen in the next future:
 - The Fresh Bunch injection technique
 - The multiple stage cascade
 - Superradance in a cascade
 - FEL amplification from a HHG source/harmonic generation

MAKE EXPERIENCE !!!

- Conventional lasers and FEL are merged in a single device. Collaboration with laser people community is becoming fundamental in short wavelength FEL research
- New advances in the field of harmonic generation from conventional laser sources could provide means to extend the cascade wavelength operation range in the future