Short Radiation Pulses from Storage Rings

Shaukat Khan, University of Hamburg

Short Radiation Pulses from Storage Rings

Shaukat Khan, University of Hamburg

1) Reduction of electron bunch length

- (a) low momentum-compaction factor
- (b) high radiofrequency gradients

2) Longitudinal-transverse correlation

- (a) radiofrequency orbit deflection
- (b) femtosecond-laser slicing

1) Reduction of the electron bunch length

random quantum emission \leftrightarrow radiation damping

$$\sigma_{\Delta E/E} \sim E_o \sqrt{\frac{\left\langle 1/R^3\right\rangle}{\left\langle 1/R^2\right\rangle}}$$

- → natural energy spread
- \rightarrow natural bunch length
- \rightarrow current dependent effects (i) potential-well distortion
- (i) potential-well distortion(ii) bunch-lengthening instability

1) Reduction of the electron bunch length

(given: beam energy, circumference, energy spread)

(a) low momentum-compaction factor

(b) high gradient of the rf voltage

$$\frac{dV_{rf}}{dt} = \widehat{V}_{rf}\,\omega_{rf}\,\cos\phi_s$$

- optimum synchronous phase
- high voltage amplitude
- high frequency
- or: non-sinusoidal shape

the machine optics

low alpha optics parameter reg.user optics optics circumference / m 240 240 number of cells 2x8 16 nom. Energy / GeV 1.7 1.7 tunes Qx / Qy 17.8/6.7 14.7 / 6.2 nat. chrom ξx / ξy -53 / -27 -35 / -27 nat. emitt / nmrad 6 30 synchr. freq. / kHz 7.5 7.5 ... 0.35 7.2E-4 7E-4 ...1E-6 mom. com. factor α plus & minus nat. bunch length rms / ps 12 12 ... 0.7

main parameters

4 sextuple families for beam dynamics corrections short bunches by low α manipulation $\alpha^2 \sim \text{fs} = \text{control value}$ single & multi bunch 1.25 MHz to 500 MHz 10 μ A < I< 0.1 mA (2mA~10¹⁰electrons) very stable machine operation, good life time 20 mA and 20 hours

application: coherent THz radiation, ICFA No. 35, article by U. Schade et al. short x-ray pulses at BESSY, accepted PRL, A. Krasyuk et al., 2005

Bunch length and current relation

bunch length - current relation

bursting data

temporal emission spectrum of CSR bursts (user optics)

bursting frequency / kHz

results from bursting threshold:

- eff. / natural bunch length $\sigma/\sigma = 1.5$
- eff. bunch length \cdot unstable mode $\sigma k_i = 2\pi\sigma/\lambda_i = 5$
- bunch length ~ current relation σ ~I^a a=3/8 from experiments, a=3/7 from theory

scaling relation between bunch length σ , synchrotron frequency f and current I:

$$(\sigma / \sigma_0)^4 = (f / f_0)^4 + (I / I_0)^{3/2}$$

- optimum synchronous phase
- high rf voltage
- high frequency
- non-sinusoidal rf voltage

- optimum synchronous phase
- high rf voltage
- high frequency
- non-sinusoidal rf voltage

passive 3rd harmonic cavity at BESSY: W. Anders, P. Kuske, PAC 2003 (Portland), 1186.

- optimum synchronous phase
- high rf voltage
- high frequency
- non-sinusoidal rf voltage

proposed 1.5 GHz superconducting rf structure G. Wüstefeld, Short-Bunch Workshop, Nov 2005, Frascati

option for enhanced THz radiation and short X-ray pulses at BESSY II:

<u>upgrading the rf-gradient</u> by a 1.5 GHz, cw superconducting rf-structure placed into one straight ID-section

applied scaling law for bursting threshold:

$$I \propto \sigma_z^{8/3} dV_{rf} / dz$$

- optimum synchronous phase
- high rf voltage
- high frequency
- non-sinusoidal rf voltage

V. Litvinenko et al., PAC 2001 (Chicago), 2614

2) Longitudinal-transverse correlation(a) Rf orbit deflection using "crab" cavities [1]

[1] A. Zholents, P. Heimann, M. Zolotorev, J. Byrd, NIM A 425 (1999), 385

2) Longitudinal-transverse correlation(a) Rf orbit deflection using "crab" cavities [1]

[1] A. Zholents, P. Heimann, M. Zolotorev, J. Byrd, NIM A 425 (1999), 385

2) Longitudinal-transverse correlation(a) Rf orbit deflection using "crab" cavities [1]

Extensive study for APS/Argonne [2]:

~ 1 ps resolution with 6 MV @ 2.8 GHz (h=8)

[1] A. Zholents, P. Heimann, M. Zolotorev, J. Byrd, NIM A 425 (1999), 385
[2] M. Borland, PRST-AB 8 (2005), 074001

2) Longitudinal-transverse correlation(b) Femtosecond laser slicing [1]

[1] A. A. Zholents, M. S. Zoloterev, PRL 76 (1996), 912.

2) Longitudinal-transverse correlation(b) Femtosecond laser slicing [1]

intensity / a.u.

[1] A. A. Zholents, M. S. Zoloterev, PRL 76 (1996), 912.

2) Longitudinal-transverse correlation(b) Femtosecond laser slicing [1]

intensity / a.u.

[1] A. A. Zholents, M. S. Zoloterev, PRL 76 (1996), 912.

Femtosecond slicing sources worldwide

L. C.	ALS(new)	BESSY	SLS
beam energy (GeV)	1.9	1.7	2.4
photon energy (keV)	0.2-10	0.4-1.4	3-8
photon polarization	linear	lin./circ.	linear
separation scheme	spatial	angular	angular
pulse length (fs, fwhm)	200	100	100
photons/pulse (0.1% bw) 2000	1000	1000
repetition rate (kHz)	20	1	1

Femtosecond Undulator Beamline – Overview

I. Insertion Device

- highest possible flux and brightness 0.2-10 keV
- small-gap undulator/wiggler (1.5 T, 50 x 3cm period)
 x10² increase in flux, x10³ increase in brightness

II. Beamlines for Femtosecond X-ray Science

isolation of femtosecond x-ray, 0.2-2 keV, 2-10 keV
 sector 6 - proximity to existing wiggler 200 fs x-rays

III. Laser: average power/repetition rate

30 W (1.5 mJ per pulse, 20 kHz)
 x10 increase in flux

IV. Storage Ring Modifications

local vertical dispersion bump – sector 6 and/or 5

AWRENCE BERKELEY NATIONAL LABORATORY

In-Vacuum Undulator/Wiggler

S. Marks et al.

Specifications			
Magnetic gap	5.5 mm		
Period	30 mm		
No. periods	50		
Vacuum gap	>5 mm		
B _o	1.45 T		

courtesy R.W. Schoenlein

Femtosecond X-ray Flux

★ HHG flux from F. Krausz, laser: 10 fs, 3 mJ/pulse, 30 W

Plasma source flux in mrad² laser: 40 fs, 1 mJ/pulse, 30 W (continuum includes projected 10⁵ improvement) Cu K_α - 10¹⁰ ph/s/4π (proj. 10¹² with Hg target) cont. 6x10⁷ ph/s/4π (integ. from 7-8 keV)

> *ALS typical average x-ray flux* undulator ~10¹⁵ ph/s/0.1% BW bend-magnet ~10¹³ ph/s/0.1% BW

AWRENCE BERKELEY NATIONAL LABORATORY

R.W. Schoenlein LBNL

SLS-FEMTO

Tunable sub-ps hard X-ray (3-18 keV) source

G. Ingold et al., PAC 2001 (Chicago) 2656

courtesy: G. Ingold, SLS

longitudinal electron distribution coherent THz radiation [1] \rightarrow

U-139

2

1

0

- 1 -2

E 2

0

-1

-2

-0.2 0

0.2

z / mm

[1] K. Holldack et al., Part. Acc. Conf., Knoxville (2005), 2239.

longitudinal electron distribution \rightarrow

E 2

0

-1

1.5

[1] K. Holldack et al., Part. Acc. Conf., Knoxville (2005), 2239.

longitudinal electron distribution → coherent THz radiation [1]

[1] K. Holldack et al., Part. Acc. Conf., Knoxville (2005), 2239.

May 9/10, 2006: first sub-picosecond slicing

Alignment mode

- 3mA single bunch
- laser: 1mJ, 50fs

User operation mode

- 300mA multi-bunch + 3mA camshaft
- laser: 2.5mJ, 50fs

courtesy: G. Ingold, SLS

[1] S. Khan et al., PRST-AB 8 (2005), 040704.

UE56-PGM beamline signal versus time

synchrotron oscillations

UE56-PGM beamline signal versus time

First pump-probe experiments (*preliminary*)

C. Stamm, T. Kachel, N. Pontius, R. Mitzner, T. Quast, K. Holldack, S. Khan, C. Lupulescu, H. Dürr, W. Eberhardt (BESSY)

Time resolution ~ 150 fs

Assumed pulse duration 100 fs (FWHM), pulse lengthening:

- monochromator (wavelength K illuminated lines < 30 fs)
- 1º angle between pump and probe pulse

- path length changes over 8 hrs and 40 m

e.g. $30 \,\mu m/c = 100 \,\mathrm{fs}$

e.g.

 $\frac{18 \operatorname{mrad} \cdot 1 \operatorname{mm}}{60} = 60 \operatorname{fs}$

photo: K. Godehusen

Photon flux per s and 0.1% bandwidth

10⁶ produced (*laser repetition rate*)

10⁴ on the sample *(beamline transmission)*

10³ detected (*detector efficieny*)

Photon flux per s and 0.1% bandwidth

10⁶ produced K 5-10 laser rep.rate

10⁴ on the sample K 5-10 optimized beamline

10³ detectedK 2-3detection efficiencyK 5detector energy

K 5 detector array

1 1000

Summary

	resolution	intensity	effort
- low momentum-compaction factor	1 ps	\$	
- high rf gradient	1 ps	+	~ E
- crab-cavity scheme	1 ps	+	~ E
- femtosecond laser slicing	100 fs	\$\$	$\sim E^2$

Summary

	resolution	intensity	effort
- low momentum-compaction factor	1 ps	\$	
- high rf gradient	1 ps	+	~ E
- crab-cavity scheme	1 ps	+	~ E
- femtosecond laser slicing	100 fs	\$\$	~ E ²

@ full bunch rate (500 MHz)

Summary

@ 500 MHz bunch rate

	resolution	intensity	effort
- low momentum-compaction factor	1 ps	\$	
- high rf gradient	1 ps	+	~ E
- crab-cavity scheme	1 ps	+	~ E
- femtosecond laser slicing	100 fs	\$\$	~ E ²

@ 1 kHz pump-pulse rate

Acknowledgements

Contributions to this talk by:

M. Borland (APS, Argonne) G. Ingold (SLS, Villigen) R. Schoenlein (LBNL, Berkeley) C. Stamm (BESSY, Berlin) G. Wüstefeld (BESSY, Berlin) A. Zholents (LBNL, Berlekey)

Femtosecond laser slicing at BESSY:

H. Bäcker, J. Bahrdt, H. Dürr, V. Dürr, W. Eberhardt, K. Godehusen, A. Gaupp,
K. Holldack*, E. Jaeschke, T. Kachel*, S. Khan*, D. Krämer, C. Lupulescu*, R. Mitzner*,
M. Neeb, W. Peatman, N. Pontius*, T. Quast*, G. Reichardt, M. Richter, M. Scheer,
O. Schwarzkopf, F. Senf, C. Stamm*, G. Wüstefeld (BESSY, Berlin)
I. Hertel, F. Noack, W. Sandner, I. Will, N. Zhavaronkov (MBI, Berlin)
*) commissioning team

Useful discussions with R. Abela, P. Beaud, G. Ingold, A. Streun (PSI, Villigen), P. Heimann, R. W. Schoenlein, A. Zholents, M. Zoloterev (LBNL, Berkeley)

Funded by the Bundesministerium für Bildung und Forschung and by the Land Berlin