

Trends in XUV synchrotron radiation research

Svante Svensson Dept. of Physics Uppsala University

Third generation facilities

- Storage ring facilities
- Emittance <10 nmrad
- Use of insertion elements
- Use of:
 - Time structure
 - Polarization incl. Circular
 - Spatial high degree of coherence
 - Possibility of high resolution =>E/ Δ E \approx 10⁵

HAS HAD A TREMENDOUS IMPACT ON KEY FIELDS IN MODERN MATERIALS (WIDE SENSE) RESEARCH

The development of the brilliance and Moore ´s law

The energy resolution of electron spectrometers

Core electrons excitation and decay

Core excitation, ionization and decay processes.

Improvement of resolution

From ESCA applied to free molecules 1969

SR excitation MAX 1993

Beam Dynamics Hamburg 2006

High Resolution X-ray photoelectron spectroscopy

New effects studied at 3-G facilities

- Core levels
 - Vibrational fine structure
 - Molecular field splitting
 - Parity splitting
 - Line profiles
 - Post collision
 - Inter Atomic Coulombic Decay (ICD)

Sample handling

- Gases
- Molecular and atomic beams
- Cluster beams
- Liquid beams
- Complex surfaces
- Bulk samples

- Laser excitation in combination with SR and advanced spectroscopy
- Laser cooling
- Laser dissociation

Some examples

• Inter Atomic Coulombic Decay (ICD)

Theoretical prediction: L. S. Cederbaum, J. Zobeley, and F. Tarantelli, Phys. Rev. Lett. 79, 4778 (1997); J. Zobeley, L. S. Cederbaum, and F. Tarantelli, J. Chem. Phys. 108, 9737 (1998).

Interatomic Coulombic Decay

Interatomic Coulombic Decay

Interatomic Coulombic Decay

Interatomic Coulombic Decay

Interatomic Coulombic Decay

Interatomic Coulombic Decay

ICD-experimental evidence

First observation: Hergenhahn and co-workers observe increase i signal of low kinetic energy electrons above Ne 2s threshold.

S. Marburger et al. PRL **90**, 203401 (2003)

ICD-experimental evidence

COLTRIMS

hv=58.8 eVBelow DIP

KER from dimer Coulomb explosion

T. Jahnke *et al.*, PRL **93**, 163401 (2004)

ICD-distance dependence

Dimer equilibrium distance

Decay width vs. internuclear distance

R. Santra *et al.*, PRL **85**, 4490 (2000)

ICD-size dependence

R. Santra et al., PRB 64, 245104 (2000)

Distribution of sizes around <N>

Rare gases: <N>= f(p,T,nozzle, gas)

ICD-cluster PES

ICD-cluster PES

Lorentzian needed to describe bulk peak! $(\Gamma \approx 100 \text{ meV})$

Surface peak close to Gaussian. $(\Gamma$ <20 meV)

ICD-size dependence

Width independent of size for range 100-1000 atoms:

 $\frac{\Gamma_{\text{bulk}} \approx 100 \text{ meV}}{\Gamma_{\text{surface}} < 20 \text{ meV}}$

247

3. Size distribution

UPPSALA UNIVERSITY

Well described in terms of the Franck-Condon principle

Harmonic approximation: independent contributions from each normal mode

Vibrations in clusters

Complication: many modes

Vibrations in clusters

Complication: many modes

BUT

Force constants: Intra-molecular: strong Inter-molecular: weak

Vibrations in clusters

Vibrations resolved in core electron spectrum of cluster

UPPSALA UNIVERSITY

Core hole states have short lifetimes

Core holes look like a positive charge for the outer electrons

Example Ne1s

Early example Ne 1s lifetime width of 0.28 eV $(\Delta t=1,2 \text{ fs})$

Analysis of Voigt Profile (Lorenztian tails)

Figure 15. A high resolution recording of the Ne 1s line. The measured full width at half maximum, FWHM, is 0.39 \pm 0.02 eV.

U. GELIUS, E. BASILIER, S. SVENSSON, T. BERGMARK and K. SIEGBAHN

Journal of Electron Spectroscopy and Related Phenomena, 2 (1974) 405-434

Why short lived core hole states ?

- The Auger transitions
- Coulomb matrix element

Local character One center Integrals dominate for molecules

- •Continuum orbital can have any symmetry.
- •No selection rules (except parity).
- •This integral is large whenever Auger process is energetically possible.

Core Hole states are short lived

From Chen& Crasemann 1974 (Ar)

TABLE VII. Radiationless transition probabilities (in multiples of 10^{-3} a.u.) and fluorescence yields (in multiples of 10^{-4}) for an Ar 2p vacancy in the presence of a partially filled 3p shell, for given initial multiplet states.

Initial hole configuration	Initial multiplet term	Auger rate	Fluorescence yield
$(2p)^{-1}(3p)^{-1}$	¹ S	9.210	0.954
(•	¹ P	0.479	18.34
	¹ D	10.235	0.859
(🙂 ³s	0.133	66.15
	${}^{3}\!P$	10.906	0.806
(⊙ ³ D	0.347	25.31
$(2p)^{-1}(3p)^{-2}$	² P ⁽¹⁾	9.556	1.000
	${}^{2}\!P^{(2)}$	3.38	2.828
	${}^{2}\!P^{(3)}$	1.686	5.669
	$({}^{3}\!P){}^{2}S$	0.544	17.566
	${}^{2}D^{(1)}$	14.690	0.651
	${}^{2}D^{(2)}$	0.481	19.832
	$({}^{3}\!P){}^{4}\!S$	15.859	0.603
	$({}^{3}\!P){}^{4}\!P$	0.150	63.635
	$({}^{3}\!P){}^{4}\!D$	0.285	33.56
	$(^{1}D)^{2}F$	0.2676	35.717

- Hunt for an x-ray laser ?
- Extensive calculations
- A few core excited states with longer lifetimes
- No explanation of narrow lines only output from code

M. H. Chen, F. P. Larkins, and B. Crasemann, At. Data Nucl. Data Tables 43, 1 (1990).

First clue: Quenched Auger transition?

UPPSALA UNIVERSITY

The molecular field splitting of S2p in H₂S resolved 1994 using SR

CLEARLY OBSERVED QUENCHED TRANSITION

Svensson et al PRL 72, 3021

The Auger decay Is strong only to the 2px Orbital oriented along the x-Axis as the 2b1 orbital

Molecular field splitting:

Oriented core orbitals!

PROPENSITY RULE

The Auger lines have different widths

The 3e1/2 lines are narrower than the 5e1/2 lines

TABLE IV. Experimental and theoretical lifetime widths of the $3e_{1/2}$ and $5e_{1/2}$ core-hole states of H_2S^+ .

Core-hole state	re-hole state Experiment (meV)	
$3e_{1/2}$	64 ± 2	68
$5e_{1/2}$	74 ± 2	83

Bueno et al PHYSICAL REVIEW A 67, 022714 (2003)

How can we produce long lived states???? ULTRAFAST DISSOCIATION

OCS S $2p \rightarrow \sigma^*$ excitation

EXTREMELY WEAK atomic signals in RAES But strong signal in X-ray fluorescence

UPPSALA UNIVERSITY

Preferred orientation in L_{2,3}MM Auger decay And SPIN FLIP IS FORBIDDEN!

^{95%}

Calculation of S2p53p5 states

term	weight $(\%)$	E (eV)	$\Gamma_A \ (\mathrm{meV})$	$\Gamma_X (\mu eV)$
$^{1}S_{0}$	94	164.28	201.1	22
${}^{1}D_{2}$	92	162.95	214.6	20
${}^{3}P_{1}$	90	161.86	213.6	21
${}^{3}P_{0}$	94	161.71	234.1	21
${}^{3}P_{2}$	92	161.21	229.5	21
${}^{3}D_{1}$	79	160.40	7.6	21
${}^{3}S_{1}$	77	159.81	25.4	20
${}^{3}D_{2}$	94	159.66	20.7	20
${}^{3}D_{3}$	100	159.16	7.4	20
${}^{1}P_{1}$	82	158.94	11.2	21
OCS (S $2p^{-1}\sigma^*$)		—	82.8	28

- The ULTRA FAST dissociation produces core excited S* molecules in lowest energy states
- These states have long lifetimes
- Fluorescense decay of minor importance for lifetime
- The Atomic XES signal seen only because the Auger decay is weak
- The core excited atoms fly 10-30 A
- "Atomic grenade"

•The lowest terms of 2p⁵3pⁿ configurations.

•Long-lived atomic 2p core-hole states are generally the energetically lowest ones with their configuration.

•These states will be preferentially populated in a dissociation process of a core-excited molecular state where transitions via a multitude of avoided crossing typically lead to the energetically lowest states.

Thanks to

Reinhold F. Fink Olle Björneholm Ingela Hjelte Catalin Miron Margit Bässler A-N de Brito M. Bueno

Maria Novella Piancastelli

Stacey L. Sörensen Annika Eschner F. Gelmuk [´] hanov H. Ågren

M. Abu-samha, Leif Sæthre, Knut Børve

Maxim Tchaplyguine, Gunnar Öhrwall, Andreas Lindblad, Ricardo Marinho, Denis Céolin

H. Aksela S. Aksela

Final comment

I have been active in SR based electron spectroscopy for over 30 years. I have been surfing on a wave of Brilliance. 11 orders of magnitude high! We are now facing another very big (7 orders of magnitude) and coherent wave of brilliance. 30 MORE YEARS THANKS!

sweco FFNS 🖄

MAX IV planned project