
APPLICATION OF MACHINE LEARNING
IN LONGITUDINAL PHASE SPACE PREDICTION

AT THE EUROPEAN XFEL
Z. H. Zhu1,2∗

Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
1also at University of Chinese Academy of Sciences, Beijing, China

2also at Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
S. Tomin, J. Kaiser

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Abstract
Beam longitudinal phase space (LPS) distribution is the

crucial property to driving the high-brightness free-electron
laser. However, the beam LPS diagnostics is often de-
structive and the relevant physical simulation is too time-
consuming to be involved in the control room. Therefore, we
explored applying the machine learning models to facilitate
the virtual diagnostic of the LPS distribution at European
XFEL. Two different model designs are proposed and the
performance demonstrates its feasibility based on the sim-
ulations. This work lays the further investigation of the
real-time virtual diagnostics in the operational machine.

INTRODUCTION
In the past decade, The X-ray free-electron laser (XFEL)

facilities around the world provide coherent and ultra-short
X-ray radiation with tunable wavelength and high-brightness
[1], facilitating the ultra-fast scientific research and discovery
with atomic spatial resolution [2–4]. In the daily operation
of the facility, the electron beam with high quality is indis-
pensable to the desirable lasing performance in the undulator
sections, especially the beam longitudinal properties, such as
the charge distribution and slice energy spread distribution
along the beam. The acquirement of these essential beam
properties requires the measurement of the entire beam lon-
gitudinal phase space (LPS) with a diagnostic instrument
such as transverse deflecting structure (TDS). However, this
measurement is conducted in an interceptive manner, which
makes it impossible to be taken during the photon delivery
to the experimental stations unless it is implemented down-
stream of the undulator section. In addition to that, the LPS
measurement is subject to the resolution limitations from
the TDS. One potential approach is beam physical simu-
lation in which the collective effects are modeled and the
beam dynamics results are well matched with experimental
measurement [5]. Unfortunately, it is too computationally
expensive to be applicable in the control room.

To overcome these difficulties, machine learning (ML),
especially the deep neural network, has the potential to cope
with system modeling in the accelerator community as a
result of the rapid development of computer science. Based
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on it, we are enabled to construct the surrogate model with
the fast-execution speed with ML, which has demonstrated
its data processing capabilities in many industrial fields.
With this powerful tool introduced, some ML applications
in accelerators have been explored and studied in the past few
years. Based on the built surrogate model with fast execution
and reliable accuracy, some beam dynamics optimization
projects can benefit from the orders of magnitude increase
in speed [6, 7].In addition to that, it can also facilitate the
automatic online tuning and beam phase space control in
FEL facility [8, 9].

Because of the powerful capability of interpreting images,
there has been some recent research about neural network-
based virtual diagnostic of 2D beam LPS distribution in the
accelerator community [10–13]. In this paper, we propose
an alternative manner to predict the beam LPS distribution.
This surrogate model is built to provide the prediction of
the slice beam properties distributions and its corresponding
LPS is reconstructed based on them. Furthermore, Con-
volutional neural networks (CNN) have been implemented
as the second method. We compare the results from these
two approaches and the preliminary study paves the path for
further investigation on the online virtual diagnostic in the
operational machine.

METHODOLOGY AND RESULTS
Here we demonstrate the feasibility of the machine

learning-based beam LPS reconstruction with beam dynam-
ics simulations from European X-ray Free-Electron Laser
[14]. The schematic layout of the European XFEL accelera-
tor is shown in Fig. 1. In the main linac section, the beam
experiences the longitudinal density modulations at three
bunch compressor chicanes with the nominated beam energy
of 130 MeV, 700 MeV, and 2.4 GeV respectively. The initial
beam distribution at the end of the gun cavity is simulated
with ASTRA [15]. The remaining physical tracking, which
simulates the beam dynamics from the gun cavity exit to
the collimator section at the entrance of the undulator, is
conducted with OCELOT code [16].

In the simulations, the momentum compaction factor in
each dispersive section is kept as their initial values. We
tune the upstream RF parameters to adjust the energy chirp
at the entrance of each dispersive section to change the com-
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Figure 1: Schematic layout of EuXFEL linear accelerator from the gun cavity exit to the entrance of the undulator.

pression scenarios. The first three parameters are the first-,
second-, and third-order coefficient in energy distribution at
the injector (I1) exit, which define the detailed compression
scenario in the first bunch compressor. The other two param-
eters control the compression strengths in the second and
third chicane sections. In this preliminary study, we adjust
the RF settings with relatively small variations based on the
nominal design of beam dynamics. The scanning range of
each parameter can be found in Table 1.

Table 1: The Five Input Features and these Values Ranges
for Simulation

Parameters Range

I1 chirp (1/m) [-8.2, -8]
I1 curvaure (1/m2) [260, 280]
I1 skewness (1/m3) [45000, 47000]
L1 chirp (1/m) [-13.7, -12.6]
L2 chirp (1/m) [0, 2]

The total sample number is 40,000, 70% of which is used
for model training and the rest 30% for validation. The open-
source machine learning library Pytorch [17] is applied here
to build the architecture for all the neural networks presented
in this paper.

Slice Parameters-based LPS Prediction
The first method of the LPS distribution prediction is

based on the three slice beam property distributions: current,
mean energy, and slice energy spread.For each simulation
in the sample set, these three distributions are generated
with longitudinal beam dynamics analysis with 300 slices.
The beam current profile indicates the density distribution
along the beam, and the beam energy distribution can be
predicted based on the Gaussian distribution assumption in
each longitudinal slice.

Additionally, the bin width in the longitudinal position
for each sample is collected as the scaling parameter, which
describes the bunch longitudinal extent. The constructed
fully-connected neural network contains the architecture of
four hidden layers. In each of them, the neuron number is
256, and Rectified Linear Unit (ReLU) [18] is selected as
the activation function.

After the model construction, we test its performance
using examples of different compression scenarios, from

(a) (b) (c)

(d) (e)

Figure 2: One example to illustrate the reconstruction ac-
cording to the three property distribution (a-c). (d) The
reconstructed LPS distribution based on the NN prediction.
(e) The groud truth from OCELOT simulation. The head of
the bunch is on the left of the coordinate.

which a good agreement can be found between the model
prediction and the corresponding simulation result. Fig. 2
shows the beam property distributions from one validation
case of normal compression intensity. In Fig. 2(d), the re-
constructed LPS distribution matches well with the one from
the simulation that is shown in Fig. 2(e).

Based on this model, the immediate beam LPS distri-
bution can be obtained and this tool is eligible for being
introduced in the control room to provide real-time online
virtual diagnostic. Furthermore, it is noteworthy that the
training process during the model construction is fast, which
means it is feasible to introduce the model in the control
room and retrain it based on the existing one with updated
measurement samples. Consequently, its accuracy will be
enhanced as well as its robustness. One potential issue for
this method is some information in the LPS distribution is
lost during the reconstruction, which is illustrated in Fig. 3.
This problem results from the outliers in the LPS distribution,
which can be observed in Fig. 3(e). This distribution leads
to a larger slice energy spread, resulting in inaccuracy in the
prediction based on the Gaussian distribution assumption.
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Figure 3: Another example from the validation set in which
the distribution in the bunch head and tail is spoiled.

Image-based LPS Prediction
Other than the method presented above, we also give an

attempt on treating the entire LPS distribution as an image
and conduct image processing. The power of convolutional
encoder-decoder network, which is introduced to this image
regression project, has been demonstrated with applications
from numerous industrial fields including facial recognition,
image classification, speech recognition, etc. For each sam-
ple, its 2D LPS image is generated after binning the beam
distribution in phase space with a 2D histogram of the same
shape. Here we construct the convolutional encoder-decoder
network to power the virtual diagnostics of LPS distribu-
tion after multi-stage longitudinal density modulation and
compare its performance of it with the previous method.

The architecture of the network is shown in Fig. 4. Its
output is an image of 300×300 pixels that displays the 2D
distribution in the phase space. The other fully connected
neural network is deployed to provide the resolution predic-
tion based on the same input features. Due to the different
bunch lengths between the samples, the pixel resolutions in
the two coordinates vary between the samples as well. For
a nearly full compression case, the time resolution for the
LPS image can be as high as 0.3 fs/pixel.
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Figure 4: The contains one input layer, which is followed
by three fully connected layers (green). The latent layer is
highlighted in blue. Downstream it, the eight transposed
convolutional layers (orange) are built as the decoder.

(a) (b)

(c) (d)

Figure 5: Two examples as the performance of the CNN
model. The top row shows the LPS from a long bunch case
(under compression), and the bottom one shows the short
bunch case (full compression).

As evidenced in Fig. 5, there is a good agreement be-
tween the prediction from the model and the ground truth.
Compared with the first method whose neural network is
designed to predict the slice beam property distributions, the
most obvious advantage of this method is the predicted 2D
image can reproduce the detail in the beam distribution in
LPS, such as the microbunching structure and the outliers
around the bunch head. Concerning the training duration,
it takes nearly 20h on one Graphics Processing Unit node,
which is much more computationally-intense than the previ-
ous method in which the model training is easily conducted
in a single CPU within 5 minutes.

CONCLUSION

In this paper, the machine learning-based prediction of
the beam longitudinal phase space distribution is presented.
Two different strategies are validated with simulation sam-
ples and the pros and cons of each are discussed. According
to performance in the validation set, both of them achieve
good and fast prediction of the beam LPS distribution after
multi-stage longitudinal charge modulations. With its fast
execution and reliable prediction, the online virtual diagnos-
tic and optimization of beam longitudinal properties can be
achievable. The performance test of the constructed model
on the operational machine is in the following schedule and
it lays the foundation for further exploration of machine
learning applications in the accelerator operation.
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