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Abstract
An X-ray free-electron laser oscillator (XFELO) is a next

generation X-ray source promising radiation with full three-
dimensional coherence, nearly constant pulse to pulse stabil-
ity and more than an order of magnitude higher spectral flux
compared to SASE FELs. In this contribution the concept
of an R&D project for installation of an XFELO demonstra-
tor experiment at the European XFEL facility is conceptu-
ally presented. It is composed of an X-ray cavity design
in backscattering geometry of 133 m round trip length with
four undulator sections of 20 m total length producing the
FEL radiation. It uses cryocooled diamond crystals and
employs the concept of retroreflection to reduce the sensi-
tivity to vibrations. Start to end simulations were carried
out which account for realistic electron bunch distributions,
inter RF-pulse bunch fluctuations, various possible errors
of the X-ray optics as well as the impact of heat load on
the diamond crystals. The estimated performance and sta-
bility derived from these simulations shall be reported and
foreseen issues shall be discussed.

INTRODUCTION
In order to overcome one of the major flaws of SASE

based FEL radiation in the hard X-ray regime, which is the
low degree of monochromaticity and the lack of of longitu-
dinal coherence, multiple schemes have been proposed and
partly realized over the recent years. Promising schemes are
the X-ray Regenerative Amplifier FEL (XRAFEL) proposed
by Z. Huang in 2006 [1] and the X-ray Free Electron Laser
Oscillator (XFELO) proposed by K.J. Kim in 2008 [2]. Both
schemes are based on trapping FEL radiation inside a X-ray
optical cavity, using monochromatizing crystals based on
Bragg reflection instead of total reflecting optical mirrors [1,
3]. While the XFELO is closely related to the low gain
FELO scheme, the XRAFEL is based on the strong gain
FEL amplifier scheme. In the following, both schemes will
be summarized under the term XFELO. Due the promise of
delivering outstanding radiation properties, XFELOs have
received growing interest in the recent years [3–14].
European XFEL is developing an XFELO demonstrator to be
installed at the end of one of the hard X-ray undulator lines
(SASE1) in the first quarter of 2024. The principal goal of
the demonstrator is to prove the working concept - meaning
seeding and increasing longitudinal coherence by several
orders of magnitude over subsequent round trips, from syn-
chrotron radiation to almost monochromatic FEL amplifier
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radiation. It is not primarily meant for user-operation, and
therefore not optimized to this end.

In this proceeding, the fundamentals of the experimental
setup as well as the expected output characteristics shall
be sketched. More detailed information will be given in a
separate publication [15] or can be looked up in ref. [16].

A PROOF-OF-CONCEPT XFELO
EXPERIMENT

The X-ray cavity is designed in a simple two crystal
backscattering geometry, following the principle of
maximum simplicity to avoid mechanical complications.
Hence, features like wavelength tunability [3, 7] are omitted.
The crystals are two optically thick (𝑡𝐶 ≈ 250 µm) diamond
crystals. This increases the robustness of the setup against
thermal load, which is further improved by cooling the
diamonds to a temperature of 𝑇 = 77 K [10, 11, 17–19]. In
between the crystals, four 5 m long variable gap undulator
sections are positioned and two chicanes are used to in- and
out-couple the electrons. The crystal to crystal distance
is fixed to 𝐿𝐶−𝐶 ≈ 66.42 m, which matches an electron
bunch repetition rate of 𝑓 el.

rep = 2.25 MHz, being a common
repetition rate at the European XFEL accelerator. Each
reflecting crystals is combined with two grazing incidence
mirrors aligned orthogonally with respect to each other and
the crystal. This forms a so called retroreflector, which
may decouple the setup from outer vibrations (see [15]
or [16] for reference). Additionally, by applying a slight
meridional curvature 𝑅𝑚 ≈ 20 km on the total reflecting
mirrors, focusing of the X-ray pulses can be achieved.

In Fig. 1 the evolution of the pulse energy of the XFELO
demonstrator for a photon energy of 𝐸𝑐 = 9.05 keV is dis-
played. The different curves correspond to the X-ray pulse
directly after the undulator (blue), reentering the undulator
as seed for the subsequent round trip (red) and the transmit-
ted pulse (yellow). The simulations include various differ-
ent error sources, such as statistical electron beam shot to
shot fluctuations common for the European XFEL acceler-
ator [20], crystal misalignment and mirror surface profile
error of ℎrms = 1.5 nm. Figure 1(a), which neglects the im-
pact of heat load on the crystals, shows that the pulse energy
trapped inside the X-ray cavity reaches up to very high value,
which corresponds in combination with a very small band-
width of only 𝜎𝐸ph

= 20.4(5) meV to unparalleled peak spec-
tral densities. Owing to the simplistic transmission through a
thick crystal, only the spectral side lobes regenerated at every
round trip are transmitted. This leads to much lower trans-
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Figure 1: Pulse energy evolution in logarithmic scale for a photon energy of 𝐸𝑐 = 9.05 keV, corresponding to a diamond C
111 orientation, neglecting heat load (a) and including heat load in the calculation (b). The inset show the pulse energies
around the maxima in linear scale. The heat load evidently strongly destabilizes the output.

mitted pulse energies at around 𝑄𝑡𝑟 ≈ 0.95(5) mJ. Yet, still
showing a very small bandwidth of only 𝜎𝐸ph

= 69(2) meV,
the expected peak spectral flux is still much higher compared
to SASE.
However, as evident from Fig. 1(b), when including the
impact of thermal load into the fully coupled simulations,
the output gets strongly destabilized, even at an optimized
crystal base temperature of 𝑇𝑐 = 77 K. This is fully under-
standable, regarding the intense and focussed, X-ray pulses
interacting with the crystal at a megahertz repetition rate.

In a more detailed publication [15], the details of the X-ray
output characteristics, with and without heat load, as well
as its implications on the demonstrator experiment, will be
explained in much more detail.
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