FINE AND HYPERFINE STRUCTURE OF FEL EMISSION SPECTRA

V. V. Kubarev¹, Ya. V. Getmanov¹, O. A. Shevchenko¹ Y.U. Jeong², S.Y. Bae²

¹ Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russian Federation
² Korea Atomic Energy Research Institute, Daejon, Republic of Korea

FEL-2019, Hamburg, 26-30 August, 2019

Contents

• Introduction:

- Three types of coherency and spectral structure in FELs
- Motivation of the investigation
- Experiments
 - FEL facilities (KAERI FEL and NovoFEL)
 - Instruments and methods (resonance Fabry-Perot interferometers)
 - Fine and hyperfine spectral structures of KAERI FEL
 - Fine and hyperfine spectral structure of terahertz NovoFEL
- Possible applications
- Conclusion

Motivation

- Characterization of the FELs radiation
- Important for user experiments in the field of high-resolution THz spectroscopy

Three types of coherency and spectral structure in FELs

1) Hyperfine coherency – coherency between pulses radiated by one intra-cavity pulse: $\Delta v = c / 2L_0$

3) Intra-pulse coherency – coherency inside pulse:

 $\Delta v = c / L_{\text{slippage}} = c / \lambda N$, unstable regime, side-band instability on trapped electrons $\Delta v = c / L_{\text{pulse}} = 1/\Delta t$, stable regime, Fourier-transform limit

The all coherency are independent. Hyperfine coherency is present *a priory*

KAERI FEL facility

E = 6-7 MeV I = 40-50 mA $\lambda = 110-160 \text{ }\mu\text{m}$ $P_{macro} = 40-50 \text{ }W$ $P_{micro} = 0.5-1 \text{ }k\text{W}$

Macropulse: $\Delta t_{mac} = 5-6$

 $\Delta t_{mac} = 5-6 \ \mu s; \ f_{mac} = 1 \text{Hz}$

Micropulse: $\Delta t_{mic} \approx 30 \text{ ps}; f_{mic} = 2.8 \text{ GHz}$ (space period $\Lambda = 107 \text{ mm}$)

Optical Resonator: L = 2781 mm; $f_{OR} = c/2L = 54$ MHz

Number of intracavity pulses: $2L/\Lambda = 52$

NovoFEL facility

Radiation parameters of the NovoFEL

Laser	Terahertz	Far-Infrared	Infrared
Status	In operation since 2003	In operation since 2009	In operation since 2015
Wavelength, μm	<mark>90 – 240</mark>	37 – 80	8 – 11 (7–30)
Relative spectral width (FWHM), %	<mark>0.2 – 2</mark>	0.2 – 2	0.1 – 1
Monochromaticity	<mark>2·10⁻</mark> 8		
Maximum average power, kW	<mark>0.5</mark>	0.5	0.1 (1)
Maximum peak power, MW	<mark>0.9</mark>	2.0	10
Pulse duration, ps	<mark>70 – 120</mark>	20 – 40	10 – 20
Pulse repetition rate, MHz	<mark>5.6; 11.2; 22.4</mark>	7.4	3.7
Polarization	Linear, > 99.6 %		
Beams	Gaussian beams with diffraction divergence		

Typical radiation regime of THz NovoFEL 178 ns & *f* = 5.6 MHz **≈** 100 ps Δt, with 1 pulse in optical resonator is continuous 5.6-MHz train of 100 ps pulses: t *f* = 5.6 MHz Fourier transform of coherent laser pulses: Hyperfine mode structure with $2/\Delta t \approx 6 \text{ GHz}$ $\Delta v = f = c/2L = 5.6$ MHz Number of pulses inside optical resonator: 1 4 2

5.6 MHz 11.2 MHz 22.4 MHz

Instruments and Methods. Resonance Fabry-Perot Interferometer

- I radiated FEL pulses (beams)
- II lens beam compressors and wavefront correctors
- III mesh resonance Fabry-Perot interferometers
- IV detector systems

a) KAERI FEL:

- 1 electroformed metallic meshes
- 2 hollow dielectric waveguide (glass tube)
- 3 different detectors

$$\Lambda = 107.2 \text{ mm} \\ L_{FPI-1} = 53.6 \text{ mm} (m=1) \\ L_{FPI-2} = 107.2 \text{ mm} (m=2)$$
 fine
$$L_{FPI-3} = 536 \text{ mm} (m=10) \\ \text{dense 20-} \mu \text{m meshes}$$
 hyperfine

Resonance Fabry-Perot Interferometer (FPI):

 $L_{FPI} = \Lambda/(2n)$ or $L_{FPI} = (\Lambda/2) \cdot m$, where Λ is the distance between pulses and *n* and *m* are integers.

Two operation modes of the FPI:

a) Slow, Frequency-domain, $P_{\text{transmitted}} = P(L_{FPI})$; b) Fast, Time-domain, $P_{\text{transmitted}} = P(t, L_{FPI} = \text{const})$

Fine spectral structures of the KAERI FEL

Fine and hyperfine structures of the KAERI FEL

Hyperfine spectral structure of the NovoFEL

Typical regime of the NovoFEL: 1 pulse inside optical resonator

Hyperfine spectral structure of the NovoFEL

Hyperfine spectral structure of the NovoFEL: Pure TEM₀₀₀-modes

Hyperfine spectral structure of the NovoFEL: Pure TEM_{n00} -modes

NovoFEL lines (longitudinal modes) $\Delta v/v \leq 5.10^{-8}$ ($\Delta v \leq 100$ kHz) – upper estimate:

 $(\Delta v/v)_{max} = \lambda / (Quality of passive optical resonator × 2 optical resonator length) = \lambda / (Q · 2L) = 2 · 10^{-7}$ $(\Delta v/v)_{min} = Schawlow-Townes limit = \lambda / (Q · 2L · N); N - number of photons in optical resonator (10¹⁰)$

Main task here is measuring of real monochromaticity of the hyperfine lines.

Gold meshes with maximal density can increase FPI resolution (fineness) in 4 times only compare to present nickel meshes. We need to go from frequency-domain to time-domain.

Fine and hyperfine spectral structure of the NovoFEL

Spectra for *f* = 5.6 MHz (1 pulse) and *f* = 11.2 MHz (2 pulses) are identical. Full absence of coherency between 2 pulses in optical resonator of the NovoFEL

Reason: Jitter $\delta f/f >> \lambda/2\Lambda = \lambda m/2L_0 = 5 \cdot 10^{-6}$

Very useful properties for time-domain experiment

Real parameters of hyperfine spectral structure of the NovoFEL

f = 5.6 MHz

 T_{min}

 $\Delta \varphi_2$

Hyperfine coherency time:	$T_{min} = 25 \ \mu s$
Average number of coherent output pulses in one-pulse	
5.6-MHz regime:	140
Coherency length:	7 km
Monochromaticity of hyperfine	
comb-structure:	$2.2 \cdot 10^{-8}$
	(40 kHz)

15

One-mode selection by three resonance Fabry-Perot interferometers

Conclusion

- The fine mode structure of the KAERI FEL radiation with a line monochromaticity of 10⁻⁴ was found (10 coherent intracavity pulses, 1/5 part)
- The hyperfine structure of the NovoFEL with a line monochromaticity of 2.2·10⁻⁸ was measured (coherency length is 7 km). There is no fine mode structure or coherency between different pulses inside the optical resonator
- Knowledge of the real structure of the FEL's radiation is important both for their characterization and for different user spectroscopic methods developed on the facilities

Thank you for your attention !