

Generating Orbital Angular Momentum Beams in an FEL Oscillator

Y. K. Wu

DFELL, Triangle Universities Nuclear Laboratory, and Department of Physics, Duke University August 27, 2019

Research Team:

Ying K. Wu, Peifan Liu, Jun Yan, Hao Hao, Stepan F. Mikhailov, Victor G. Popov (Duke); Steve Benson (Jlab)

This work is part of PhD research of Peifan Liu

Work supported by U.S. DOE Grant: DE-FG02-97ER41033

DFELL/TUNL, Duke U.

FEL2019, Hamburg, Germany, August 26–30, 2019

- Structured Light with Orbital Angular Momentum (OAM)
 - Basic Physics and its Applications
 - OAM Beam Generation
- Duke FEL Oscillator:
- **OAM Beam Generation and Characterization**
- Potential Research Applications

Light/photons

- Wave-particle duality
- "Photons" Einstein's indivisible "light quanta," a "new" picture of light in 1905
- Energy: E=hv, momentum: p=E/c (zero rest mass)
- Spin-1 boson, two eigenstates corresponding to spin angular momentum $\pm\hbar$ per photon
- Orbital angular momentum (OAM), $\pm l\hbar$ per photon, $|l\rangle \Leftrightarrow e^{il\theta}$

Structured light, twisted light, OAM beam, helical beam, vortex beam

Applications:

- Optical tweezers orientational manipulation of particles or particle aggregates
- Optical communications high-bandwidth information encoding
- Quantum cryptography/computation higher-dimensional quantum information encoding
- Sensitive optical detection
- Basic science research in atomic, nuclear, and particle physics (modified selection rules, dichroism)
 - 1. A. Einstein, Annalen der Physik, Vol.17, No.6, pp.132 148 (1905).

3. http://www.popflock.com/learn?s=Angular_momentum_of_light

FEL2019, Hamburg, Germany, August 26–30, 2019

^{2.} M. Padgett, "Light's twist." Proc. R. Soc. A. Vol. 470. No. 2172. The Royal Society, 2014. APA

Structured Light/Vortex Beam

Optical tweezers using OAM beam

Quantum key distribution (QKD) in free-space

- Independent of local reference frame
- Reduced quantum bit error rate at large rotation angles

H. He *et al.* "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," PRL, 75, 826–829 (1995) N.B. Simpson *et al.* "Mechanical equivalence of spin andorbital angular momentum of light: an optical spanner,"Opt. Lett. 22, 52–54 (1997) M. Padgett *et al.* "Tweezers with a twist," Nat. Photon. 5, 343–348 (2011)

G. Vallone *et al.* "Free-space quantum key distribution by rotation-invariant twisted photons." PRL 113, 060503 (2014)

FEL2019, Hamburg, Germany, August 26–30, 2019

F. Tamburini, et al. "Twisting of light around rotating black holes." Nature Physics 7, pp. 195–197, (2011)

FEL2019, Hamburg, Germany, August 26–30, 2019

- Light beam with cylindrical coordinates
 - Hypergeometric-Gaussian modes (overcomplete, nonorthogonal)
 - Bessel beams
 - Diffraction-free, non-paraxial, infinity energy
 - Practical realization: Bessel-Gaussian beams

- Gaussian beams
 - Diffracting, paraxial, finite energy
 - Cylindrical geometry: Laguerre-Gaussian modes (complete and orthogonal)
 - Rectangular geometry: Hermite-Gaussian modes (complete and orthogonal)

Hermite-Gaussian: $u_{m,n}(x, y, z) = \frac{C_{m,n}}{w(z)} H_n(\frac{\sqrt{2}x}{w(z)}) H_n(\frac{\sqrt{2}y}{w(z)}) \exp(-\frac{x^2 + y^2}{w^2(z)}) \exp(-ik\frac{x^2 + y^2}{2R(z)}) e^{i(m+n+1)\psi_0(z)}$ Laguerre Gaussian: $u_{l,p}(r, \phi, z) = \frac{C_{l,p}}{w(z)} (\frac{\sqrt{2}r}{w(z)})^{|l|} L_p^{|l|}(\frac{2r^2}{w(z)^2}) \exp(-\frac{-r^2}{w^2(z)}) \exp(-ik\frac{r^2}{2R(z)}) e^{-il\phi} e^{i(|l|+2p+1)\psi_0(z)}$

1. https://en.wikipedia.org/wiki/Bessel_beam; 2. https://en.wikipedia.org/wiki/Gaussian_beam

DFELL/TUNL, Duke U.

FEL2019, Hamburg, Germany, August 26–30, 2019

Structured Light/Vortex Beam

DFELL/TUNL, Duke U.

FEL2019, Hamburg, Germany, August 26–30, 2019

7

1. wikipeida.org;

2. http://www.popflock.com/learn?s=Angular_momentum_of_light

FEL2019, Hamburg, Germany, August 26–30, 2019

OAM Light Generation

Intra-cavity mask: amplitude or phase mask

Digital Laser, with SLM

1. D. Naidoo *et al.* "Intra-cavity generation of superpositions of LaguerreGaussian beams," App. Phys. B, 106.3, pp. 683–690 (2012). 2. S. Ngcobo *et al.* "A digital laser for on-demand laser modes," Nat. Comm. 4:2289 (2013).

FEL2019, Hamburg, Germany, August 26–30, 2019

9

OAM Light Generation Summary: Intracvity OAM Light Generation

J			J	Ľ		k	\leq	6	
U	Ν	I	۷	Е	R	S	I	т	Υ

Author	Laser type	Wavelength	Roundtrip length	Output Power	Technique	Comment
A. Ito, 2010	Nd:YAG side pumped	1064 nm?	0.35-1.50 m	Not mentioned	Spot-defect mirror	Vector (scalar) polarization
D. Naidoo 2011	Microchip laser (Nd:YVO4) end pumped	1064 nm?	1 mm	~12 mW	Donut-shape pump	LG01, pi phase plate
M. P. Thirugnanasam bandam, 2011	Yb:YAG end pumped	1030 nm	0.8-2.4 m	Up to 60 mW	intra-cavity lens and birefringent uniaxial crystal	Radial, azimuthal polarization OAM
D.J. Kim 2013	Nd:YAG side pumped	1064 nm	Not mentioned	Average 25 mW (pulsed)	Q-switched, Donut-shape pump	Etalon for handness control
D. Lin 2014	Nd:YAG side pumped	1064 nm	0.44 m	~ 1 W	Donut-shape pump	Wires for handness control
D. J. Kim 2015	Nd:YVO4 end pumped	1064 nm	14 mm	100 mW	Donut-shape pump	Etalon for handness control
Y. Zhou 2016	All fiber laser	1547 nm	Fiber	Average 13 mW (pulsed)	Fiber Bragg grating	Mode locked, pulsed
D.J. Kim 2017	Nd:YAG side pumped	1064 nm?	Not mentioned	~ 500 mW	Dual cavity with two apetures	Etalon for handness control
S. Wang 2018	Yb:KYW,double end pumped	Not mentioned	~ 2.4 m	~ 220 mW	Cavity astigmatism	Double end pumped
D. Wei 2019	Nd:YVO4 side pupbed	1064 nm	0.5 -0.85 m	120 mW	Vortex wave plate	SAM-OAM conversion

All externally pumped FEL2019, Hamburg, Germany, August 26–30, 2019

Helical undulator: Higher harmonic radiation

$$A = \sqrt{2}e^{i(n-1)\phi} \left\{ \left(\gamma \theta - \frac{nK}{X}\right) J_n(X) - K J_n'(X) \right\}$$

First observation

J. Bahrdt *et al.* "First Observation of Photons Carrying Orbital Angular Momentum in Undulator Radiation" PRL 111, 034801 (2013)

S. Sasaki and I. McNulty "Proposal for Generating Brilliant X-Ray Beams Carrying Orbital Angular Momentum" PRL 100, 124801 (2007)

FEL2019, Hamburg, Germany, August 26–30, 2019

TUNE OAM Light Generation: FEL

OAM Light Generation

Coherent undulator harmonic radiation

Fundamental radiation with helical bunching

SLAC-NLCTA (800 nm)

E. Hemsing *et al.* PRL 102, 174801 (2009) E. Hemsing *et al.* Nat. Phys. 9, 549 (2013)

• Fundamental lasing with spiral zone plate

P.R. Ribič et al. PRX 7, 031036 (2017)

FEL2019, Hamburg, Germany, August 26–30, 2019

Compton Gamma-ray Sources

S. Huang, J. Li, S. Mikhailov, V. Popov, C. Sun, G. Swift, P. Wang, P. Wallace, W. Wu, Y.K. Wu, W. Xu. J. Yan **DFELL/TUNL, Duke U. FEL2019, Hamburg, Germany, August 26–30, 2019**

13

DFELL/TUNL, Duke U.

FEL2019, Hamburg, Germany, August 26–30, 2019

FEL2019, Hamburg, Germany, August 26–30, 2019

 $LG_0^2 + LG_0^{-2}$

Measured

Intensity & Reconstructed Phase

Calculated Intensity &

Phase

FEL2019, Hamburg, Germany, August 26–30, 2019

OAM Light from FEL Oscillator Oscillator FEL with OAM Beams

OAM Light from FEL Oscillator Oscillator FEL with OAM Beams

Duke

18

Coherently mixed LG02: Temporal structure

TUNI

OAM Light

Transfer of photon OAM to valence electron of a trapped ion ⁴⁰Ca⁺

Modified selection rules: An atom can absorb two quanta of angular momentum from a single photon

C.T. Schmiegelow *et al.* "Transfer of optical orbital angular momentum to a bound electron," Nat. Comm. 7:12998 (2016).

DFELL/TUNL, Duke U.

FEL2019, Hamburg, Germany, August 26–30, 2019

OAM Light Compton Scattering: Twist X-ray, Gamma-ray Photons

Twist laser beam + relativistic electrons

Twisted x-ray and gamma-ray beams generated by Compton scattering

New c rules, strong dichroism, etc.

- X-ray spectroscopy in orbital physics and magnetism
- Nuclear spectroscopy
- Nuclear resonance fluorescence
- Nuclear photoionization
- Probe for hadron structurec

Question remain:

- **Can Compton scattering produce twisted x-ray and gamma-ray efficiently?**
- What can be done to improve the production rate of these high energy OAM photons?

D. Seipt *et al.* "Structured x-ray beams from twisted electrons by inverse Compton scattering of laser light," PRA 90, 012118 (2014).

FEL2019, Hamburg, Germany, August 26–30, 2019

Tuning optical axis: horizontal position

FEL2019, Hamburg, Germany, August 26–30, 2019

Tuning optical axis: horizontal angle

FEL2019, Hamburg, Germany, August 26–30, 2019

Tuning optical axis: vertical position

FEL2019, Hamburg, Germany, August 26–30, 2019

Tuning optical axis: vertical angle

FEL2019, Hamburg, Germany, August 26–30, 2019