FEL2019, Hamburg

Hard X-Ray Self-Seeding at PAL-XFEL

Chang-Ki Min

on behalf of the PAL-XFEL self-seeding & operation team

- Recent updates of PAL-XFEL
- Hard X-ray Self-seeding
- Commissioning results from 3.5 keV to 14.4 keV
- Improved seeding with laser heater
- User-service plan

2011 ~ 2015: PAL-XFEL project for installation Apr. 2016: Commissioning started Jun. 2017: User-service started 2018 : Hard X-ray self-seeding commissioning Mar. 2019 : 60 Hz operation

MARCER

2019: - Self-seeding user service 2020 : - HX/SX slow kicker installation and commissioning - Planning for second undulator line

PAL-XFEL Parameters

Main parameters

e ⁻ Energy
e ⁻ Bunch charge
Slice emittance
Peak current
Repetition rate
FEL photon energy

FEL intensity duration SX line switching 11 GeV 150 - 220 pC < 0.4 mm mrad > 3 kA 60 Hz 2 ~ 14.5 keV (HX) 0.25 ~ 1.25 keV (SX) > 1 mJ (HX), > 0.2 mJ (SX) 5 - 35 fs DC magnet (to be changed to Kicker by 2020)

Undulator Line	HX1	SX1	Operation parameters	
Photon energy [keV]	2.0 ~ 14.5	0.25 ~ 1.25	• Gun • L1	33.7 -10 5
Beam Energy [GeV]	4 ~ 11	3.0	X-linearizer	-180.0
Wavelength Tuning	energy	gap	• L2	-19.6 -3.0
Undulator Type	Planar	Planar	• L4	-2.0
Undulator Period / Gap [mm]	26 / 8.3	35 / 9.0	• BC1 • BC2	4.97° (-66.7 mm) 3.3° (-46.9 mm)
No. of undulators	20	7	• BC3	1.6° (-11.6 mm)

*** 3-BC improves FEL power stability and phase tolerance by reducing CSR.**

14.4 keV FEL (1 mJ, 20 Nov. 2018)

E-beam at the beam dump

FEL beam at the YAG screen, 40 meter downstream of last undulator

Hard X-ray FEL Intensity

- Access to the tender X-ray range $(2.0 \sim 4 \text{ keV})$ presently is only available at PAL-XFEL
- This regime allows access to the Ru L edge and the M edges of the 4d transition metals.

FEL intensity stability (9.7 keV FEL)

Short-term (3 min.)

Fluctuations of the radiation pulse energy at the end of the exponential gain regime

$$\frac{\Delta W}{W} \sim \frac{1}{\sqrt{M_L}}$$

- FEL beam pulse duration
- $M_L (\approx {}^{24.7}/_{0.22})$
- FEL fluctuation at gain regime
- Fluctuations after saturation
- 24.7±0.7 fs (FWHM) 112 9.5%

3.2% (~ 9.5 / 3)

FEL Beam Pointing Jitter

(measured at an YAG-screen, 40-m downstream from last undulator)

- FEL beam divergence angle: 1.6 µrad
- Pointing jitter: 0.14 µrad in rms

Slow drift correction of reference timing

Stability for 3 hours

Self-Seeding Test (Aug 13, 2019)

- 200 pC charge, C100 (100um), Crystal plane [1,1,5]

SASE at 9.7 keV (1.1 mJ)

Self-seeding at 9.7 keV (400 uJ)

Motivation of self-seeding, TW single mode FEL Self-seeding + undulator tapering

PAL-XFEL Hard X-ray self-seeding(HXSS) collaboration

- ANL

Yuri Shvyd'ko, Deming Shu, Kwang-Je Kim

- TISNCM

Vladimir Blank, Sergei Terentyev

- SLAC

Franz-Josef Decker, Alberto Lutman, Ju-Hao Wu

- DESY

Svitozar Serkerz, Gianluca Geloni

- PAL-XFEL

Chang-Ki Min, Inhyuk Nam, Haeryong Yang, Gyujin Kim, Chi Hyun Shim, Jun Ho Ko, Hoon Heo, Myunghoon Cho, Bonggi Oh, Young Jin Suh, Min Jae Kim, Donghyun Na, Changbum Kim, Heung-Sik Kang. Beamline support for single-shot spectrometer.

PAL-XFEL HXSS project history

- Collaboration with APS/USA and TISNCM/Russia since 2014
 - Design of Diamond crystal monochromator by APS
 - Diamond crystals fabricated by TISNCM, Russia are checked at APS for its property
 - Engineering design by PAL staff and fabrication by Korean company
 - Feb. 2018: Installation of HXSS
- Commissioning of PAL-XEL HXSS
 - <u>May 2018</u>: Low bunch charge 40 pC for 8.4 keV, crystal offset calibration with undulator radiation
 - <u>Oct. 2018</u>: Nominal bunch charge 180 pC for 7,8. keV, crystal offset calibration with crossing points of self-seeding (Collaboration with LCLS)
 - <u>Nov. 2018</u>: Seeding for 3.5 keV with 30 um crystal and 14.4 keV (Collaboration with LCLS)
 - <u>Aug. 2019</u>: Seeding performance improved with laser heater (After discussion with DESY, SwissXFEL)
 - <u>Late 2019</u>: Test experiments planned

Hard X-ray Self-seeding

Forward Bragg diffraction theory

Lindberg, R. & Shvyd'ko, Y. V. Phys. Rev. ST Accel. Beams, 15, 050706 (2012)

• FBD time response

$$|G_{00}(t)|^2 \propto \left[\frac{1}{2T_0} \frac{J_1\left(\sqrt{\frac{t}{T_0}}\right)}{\sqrt{\frac{t}{T_0}}}\right]^2$$

- Characteristic time: $T_0 = 2\Lambda_H^2 \sin\theta / (cd)$
- Extinction length: Λ_H
- Maximum of first trailing of the wake: $t_s \sim 26 \; T_0 \label{eq:ts}$
- Duration of the wake: $t_d \sim 16 T_0$
- Spectral FBD bandwidth: $\Delta E \sim \hbar/(\pi T_0)$

Self seeding crystals

30 µm C*(110) crystal

E 8.0

7.0

6.5

9.0

8.5

E 8.0

7.0

6.5

- Color change due to annealing process.
- Crystal quality is as good as other thick crystals
- Mounting strain: < 1.5 μ rad (rms) \rightarrow 0.02 eV rms (seeding condition) in 2 x 2 mm²

Shvyd'ko, Y. V. (ANL)

Self seeding system

Crystal offset calibration using undulator radiation and DCM

Crystal Calibration (searching lines for seeding, collaboration with LCLS)

Self-seeding at 40 pC bunch charge

laser heater off, 8 fs delay, 8.3keV

Self-seeding at the nominal (~180 pC) bunch charge

7keV at 60 fs delay

- Beam parameter
 - Charge: ~180 pC
 - Peak current: ~2.5 kA
 - Emittance: ~0.4 mm-mrad
- Seeding
 - Pitch angle: 89.5 deg [400]
 - FEL energy: ~400 μJ (seeded), ~1 mJ (SASE)
 - BW (FWHM): 0.64 eV (seeded), 12 eV (SASE) (limited by Si (111) spectrometer resolution of ~0.6 eV)

SASE pulse length measurement

Pulse intensity statistics and energy jitters

Self-seeding using 30 µm diamond crystal and Si(333) spectrometer

8.3 keV θ =36.5° [220] T_{o} = 0.5 fs

FBD Calculation

• Double color seeding was observed due to small T₀, where the electron beam overlapped with many FBD wake trails

Si(333) single shot spectrometer with a resolution of \sim 0.2 eV

Self-seeding using 30 µm diamond crystal and Si(333) spectrometer

Seeding at 3.5 keV with 30 μm crystal

- Large SASE background exist due to electron energy chirp.
- Further optimization needed to decrease this SASE background

- Seeding
- Seeding: 7 unds, Amplification: 12 unds
- Pitch angle: 89.5 deg [11-1]
- FEL energy: ~400 μJ (seeded), ~1 mJ (SASE)
- BW (FWHM): 0.5 eV (seeded), 6.5 eV (SASE)

Seeding at 14.4 keV 100 μm crystal

- Seeding conditions
- [hkl] = [440]
- Pitch angle = 46.63 deg
- $\Lambda_{\rm H} = 6.41$
- $T_0 = 1.8716 \text{ fs}$
- $\Delta E = 0.1 \text{ eV}$
- $t_s \sim 50 \, \text{fs}$
- $t_d \sim 30 \text{ fs}$

- Seeding results
- Time delay: 25 fs (0th wake of FBD)
- FEL energy: ~400 μ J (seeded), ~1 mJ (SASE)

18 eV (SASE)

• BW (FWHM): 1 eV (Averaged) / 0.55 eV (single-shot) (seeded),

Improved Seeding with laser heater

- 200 pC charge, C100 (100um), Crystal plane [1,1,5], 30 fs delay

Improved Seeding with laser heater

- 200 pC charge, C100 (100um), Crystal plane [1,1,5], T₀= 3.8 fs

- Using self-seeding, the peak intensity is increased by ~9 times.
 (Sum over 1eV bandwidth is increased by ~6 times.)
- Shot-to-shot intensity fluctuation is improved from 43% RMS in SASE to 33% RMS in self-seeding.
- Pulsewidth 15 fs FWHM -> 3.6 fs FWHM (if transform limited, $\Delta v \Delta \tau = 0.441$)

Improved Seeding with laser heater

Improved Seeding with laser heater, Gain curve

Self-Seeding Optimization, \sim 1 hour

- Setup singleshot spec.
- Spectral overlap
 of two undulator regime
- Finding seeding lines
- Set a delay time
- Tapering & phaseshifter opt.

No RF phase tuning From opt. SASE config.

Tapering

15 fs FWHM at 4 kA peak current
 Zeroth trailing regime for large T₀

For user experiment

- Fast switch between SASE and seeding mode, <1 hour
- Energy scanning capability test
 - Step scan : 9700±20 eV with \sim 0.2 eV step size
 - Measured by Si(333) single shot spectrometer

Attosecond pulse trains using self-seeding

GENERATING TRAINS OF ATTOSECOND PULSES WITH A FREE-ELECTRON LASER Svitozar Serkez et al. THP051 Non-linear intermodulation yields satellites – "beat waves"

Summary

Current Status

- PAL-XFEL HXSS is successfully installed and has been commissioned with electron energy jitter of ≈10⁻⁴ rms
- Two seeding modes are commissioned [Low charge (40 pC, ~7 fs), nominal change (180pC, ~29.5 fs)].
- Lowest (3.5 keV) and highest (14.4 keV) self-seeding was demonstrated.
- Laser heater improve the intensity stability, spectral purity and brightness (x9 compared to SASE) of seeded FEL
- User- service is ready (DCM is not necessary with minimal side bands)

Future & Improvement plans

- Finding applications and test experiments
- Test at low photon energy with laser heater (and higher heater power)