

UPPSALA UNIVERSITET

From femtosecond to attosecond coherent undulator pulses

Vitaliy Goryashko

2019, Hamburg

Acknowledgements

Science & Technology Facilities Council
Daresbury Laboratory

Outline of the talk

- a taste of attosecond science;
- state-of-the-art of short pulse generation;
- FEL concepts for reaching femtosecond and attosecond pulse duration.

Characteristic time and space scales in the nanoworld

F. Krausz and M. Ivanov: Attosecond physics. Rev. Mod. Phys. 2009

Science drivers for femtosecond & attosecond FELs

Progress on ultrashort generation

HHG sources are facing saturation. New methods are needed.

Vitaliy Goryashko

A. Mak et al. & V. Goryashko, Reports on Progress in Physics, 2018.

State-of-the-art of short-pulse, CEP-stable generation

Concepts for short-pulse generation with FELs

Concepts for short-pulse generation with FELs

XFEL attosecond schemes proposed (diamonds: red=0.1-1nm, magenta=1-10nm) and demonstrated (blue squares)

Examples of science requirements and FEL solutions

Example of science applications	Essential requirements	Comments	Suitable FEL schemes
Imaging of biomolecules & matter under extreme conditions	$10^{12} - 10^{13}$ photons ~ 0.5 fs resolution 0.3-10 keV	No major changes on the detector side	?
Spectroscopic mapping of electronic structure	~10 ¹¹ photons > 10 fs resolution wavelength stability ~1 keV	Traditional synchrotron community	?
Probing electronic wavefunctions with attosecond interferometry	~10 ⁸ photons CEP stability (?) ~ 100 eV ~ 0.1 fs resolution	HHG user community	?
Electronic dynamics by attosecond transient absorption	$\sim 10^7$ photons $\sim 0.1-1$ keV ~ 0.1 fs resolution	HHG user community	?

Generation of short pulses in FELs

FEL mechanisms for generation of short pulses:

- Single-spike SASE regime
- Pulse self-compression in the superradiant regime
- Tapered FEL and bandwidth control
- Mode-locking
- CEP-stable, coherent spontaneous undulator radiation

Beam preparation for generation of short pulses:

- Emittance spoiling and its derivatives
- Current enhancement and its derivatives
- Beam energy modulation
- Beam tilt, orbit mismatch, ..
- Beam self-modulation through long-wavelength, coherent undulator radiation (*see A. Marinelli talk*)

Single-spike SASE regime

For bunches shorter than $2\pi t_c$, a single SASE spike is generated*

$$t_{\rm c} = \frac{1}{2\rho\omega} \leftrightarrow l_c = \lambda_r \frac{L_g}{\lambda_u}$$

Minimum pulse duration is limited by the coherence time**

$$\tau_c = \frac{1}{\rho\omega} \sqrt{\frac{\pi \ln N_c}{18}} \propto \frac{1}{\sqrt{E_{ph}}}.$$

For soft X-ray FELs $\tau_c \sim 0.5$ -1.5 fs For hard X-ray FELs $\tau_c \sim 0.15$ -0.4 fs

The challenge is to prepare a short bunch.

E.L. Saldin et al. Optics Communications **148 (1998), 383. Vitaliy Goryashko

Single-spike generation with a slotted foil

Single-spike generation via nonlinear compression

S. Huang et al. PRL. **119**, 154801 (2017)

Reversed taper undulator operation to compensate for the time-energy chirp in the bunch.

- 20 pC at 11.5 GeV
- demonstrated at 5.6 & 9 keV
- bunch duration ~ 3 fs FWHM
- 50% of shots being single spike
- average pulse energy 10 uJ
- intensity fluctuation level 76%
- bandwidth $11.3 \pm 4.2 \text{ eV}$
- duration ~ 230 ± 82 as FWHM

Pulse self-compression in the superradiant regime

10

5 -

0

0

SR

EG

In the superradiant regime $P \propto I^2$:

- Pulse energy $\propto z^{3/2}$
- Pulse duration $\propto z^{-1/2}$
- Peak power $\propto (z v_z t)^2$
- Soliton-like solution

600

300

s [um]

T. Watanabe et al. PRL 98 (2007) 034802.

Superradiant regime: Tanaka, PRL 110 (2013) 084801

- P. Emma et al. PRL • 92 (2004) 074801.
- A. Zholents PRST-AB 8 (2005) 040701
- F. Geloni et al., DESY 10-004.

Allows for time-locking

Superradiant regime: E. Prat, PRL 114 (2015) 244801

Simple compared to other schemes but no time-locking.

Further development of Tanaka's superradiant scheme

Relative Time τ (fs)

Transversely tilted beam: E. Prat et al. (2015)

Idea: E. Prat et al, PRSTAB 18 (2015), 100701.

Experiment: A. Lutman et al, PRL 120, (2018) 264801.

Transversely tilted beam: E. Prat et al. (2015)

Idea: E. Prat et al, PRSTAB 18 (2015), 100701.

Experiment: A. Lutman et al, PRL 120, (2018) 264801.

Tapered FEL with an energy chirped beam

Experiment in the visible range: L. Giannessi et al. PRL**106**,144801 (2011).

t [fs]

CEP-stable radiation from a single-period undulator

Tibai et al., PRL 113 (2014) 104801.

G. Shamuilov et al., Optics Lett. 43 (2018) 819.

- Bunch energy 1.5 GeV
- Bunch radius 150 μm,
- Charge 4 pC,
- K of radiator 1
- Radiator period 4 cm
- Wavelength 18 nm
- Pulse energy 68 nJ
 - Pulse duration 26 as FWHM

From multi-cycle to CEP-stable single-cycle pulses

Single-cycle pulses from tapered undulator: Tanaka, PRL (2015)

- Periodic undulator field with varying strength $B_0(z) \cos (2\pi z/\lambda_u)$
- A train of electron bunches (prebunched beam)
- Radiation wavelength changes along the pulse

$$\lambda(z) = \frac{\lambda_u}{2\gamma^2} \left[1 + \frac{\mathcal{K}(z)^2}{2} \right], \qquad \mathcal{K}(z) \propto B_0(z).$$

See also V. Goryashko "Quasi-half-cycle pulses of light from a tapered undulator," Phys. Rev. Acc. & Beams, 2017.²⁴

How it really works

Vitaliy Goryashko

Pulse waveform can be controlled by taper profile. ²⁵

Pushing the limit: Y. Kida et al. APL 109, 151107 (2016)

CEP-stable attosecond interference at FERMI

Mode-locked afterburner

The mode-locked afterburner "D. J. Dunning et al., PRL 110, 104801 (2013)" may extend FERMI-type experiments on the coherent control of the quantum path to the hard X-ray region.

See C. Feng et al. PRSTAB 15, 080703 (2012) for a mode-locked seeded FEL.

Examples of science requirements and FEL solutions

Example of science applications	Essential requirements	Comments	Suitable FEL schemes
Imaging of biomolecules & matter under extreme conditions	$10^{12} - 10^{13}$ photons ~ 0.5 fs resolution 0.3-10 keV	No major changes on detector side	Beam tiltCurrent enhancement
Spectroscopic mapping of electronic structure	~10 ¹¹ photons > 10 fs resolution wavelength stability ~1 keV	Traditional synchrotron community	 single-spike SASE XLEAP
Probing electronic wavefunctions with attosecond interferometry	~10 ⁸ photons CEP stability (?) ~ 100 eV ~ 0.1 fs resolution	HHG user community	 Mode-locked FEL Short-pulse seeded FEL
Electronic dynamics by attosecond transient absorption	$\sim 10^7$ photons $\sim 0.1-1$ keV ~ 0.1 fs resolution	HHG user community	 Coherent undulator radiation

Different FEL schemes may find their niche applications.

Summary: looking towards the bright future

FELs capable of producing tailored light pulses at the highest intensities and shortest time scales.

Thank you for your attention!