Status of SXFEL Test and User Facilities

Zhentang Zhao for the SXFEL Team Shanghai Advanced Research Institute, CAS FEL19, Hamburg, 26-30 August, 2019

Introduction

- China started to develop high gain FEL in late 1990s, when a HGHG scheme based DUV-FEL was proposed;
- In the past decade, the SDUV-FEL test facility that is based on a 180MeV linac and the DCLS, an EUV-FEL user facility, based on a 300MeV linac were constructed
- SXFEL, a soft x-ray FEL, phased in test &user facilities, has been under development since 2014. Now the test facility is in commissioning, and the user facility is in integration;
- SHINE, a high repetition-rate hard X-ray FEL facility based on an 8GeV CW SCRF linac started its construction in April of 2018.

High-gain FEL Facilities in China

Photon energy coverage from UV to hard X-ray

High-gain FEL Projects in China

	SDUV-FEL	DCLS	SXFEL-TF	SXFEL-UF	SHINE
Facility type	Test facility	User facility	Test facility	User facility	User facility
Status	Shut down	Operation	Commissioning	Construction	Construction
Wavelength	150-350nm	50-150nm	8.8nm	2.0nm	0.05-3.0nm
Length	65m	150m	293m	532m	3100m
Accelerator	S band	S band	S+C band	S+C band	L band/SRF
Beam energy	100-200MeV	300MeV	0.84GeV	1.5GeV	8GeV
FEL scheme	HGHG, EEHG	HGHG	HGHG, EEHG	HGHG/EEHG, SASE	SASE, EEHG
Location	Shanghai	Dalian	Shanghai	Shanghai	Shanghai
First lasing	2009	2016	2018	2020	2025

SXFEL: Shanghai Soft X-ray FEL Facility

- SXFEL Facility consists of two projects independently funded, SXFEL test facility (SXFEL-TF) + SXFEL user facility (SXFEL-UF), located at the SSRF campus;
- SXFEL-TF was initiated in 2006 and founded in 2014, its 0.84GeV linac and undulators was installed through 2016 to 2018, it is for testing the cascaded seeding schemes;
- **SXFEL-UF** was founded to upgrade the linac energy to 1.5 GeV for driving 2 undulator lines (SASE+HGHG/EEHG) with 5 experimental stations in the water window region.

Test Facility: SXFEL-TF

A seeded FEL with two-stage HGHG or EEHG +HGHG based on a ~0.8GeV linac and located in the campus of SSRF, closing to its synchrotron;

FEL parameters

	Basel (8.8r	Baseline II (6.3nm)	
Scheme	HGHG-HGHG	EEHG-HGHG	HGHG-HGHG
Harmonics	6 × 5	6 × 5	7 × 6
Beam energy/MeV	790	790	840
FEL wavelength/nm	8.83	8.83	6.3
FEL pulse/fs	100 – 200	100 - 200	100 - 200
FEL power/MW	>100	>100	>100

SXFEL-TF Linac

Injector beam parameters

Main linac beam parameters

Bunch charge (nC)	0.5	Bunch charge (nC)	0.5
Beam energy (MeV)	129.4	Beam energy (GeV)	0.79
Pulse length (ps. FWHM)	9	Bunch length (ps, FWHM)	1.0
Emittanco (mm mrad rms)	0.05	Emittance (mm.mrad, rms)	< 2.0
Emiliance (min.mad, mis)	0.95	Energy spread (rms)	< 0.15%
Energy spread (rms)	< 0.14%	Rep-rate (Hz)	1-10
Rep-rate (Hz)	1-10	Peak current (A)	≥ 500

SXFEL-TF Undulator System

Undulators		Chicanes			
M1: Np×λu	20×8cm	DS1: length/θ/R56	12m/0-52mrad/0-25mm		
R1: Ns \times Np \times λ u	$3 \times 75 \times 4$ cm	DS2: length/θ/R56	3m/0-34mrad/0-2mm		
M2: Np×λu	30×5.5cm	FB: length/0/R56	4.46 m/0-47 mrad/0-7mm		
R2: Ns \times Np \times λ u	$6 \times 125 \times 2.35$ cm	DS3: length/0/R56	3m/0-34mrad/0-2mm		

SXFEL-TF: C-band Copper Linac

SXFEL-TF: Undulator Radiator

SXFEL-TF commissioning milestones

Current Performance of the SXFEL-TF linac

	Design Specification	Achieved Performance	Operating Parameters	
Repetition (Hz)	10	10	2	
Charge (pC)	500	>500	~600	
Normalized Emittance(µm-rad)	<1.5	~1.0	~1.0	
Bunch Length(FWHM, ps)	~10	~10	8	Injector
Energy(MeV)	120	125	120	
Energy Spread(rms, %)	≤0.14	<0.1	<0.1	
Energy(MeV)	840	400 ~ 890	790	
Energy Spread(rms, %)	≤0.15	<0.1	<0.1	NA ' I'
Bunch Length(FWHM, ps)	~1ps	~1ps	~1ps	Main linac
Normalized Emittance(µm-rad)	2.5	<2.0	~1.2	

Typical Performance of the SXFEL-TF linac

Nonlinear compensation for BC

- To maintain the initial temporal bunch profile during chicane, one 1-m X-band section is adopted to compensate the compression transformation up to second order.
- This non-linear effect during compression is also utilized for bunch profile control for cascaded HGHG lasing scheme.

Bunch Profile Control

t>0, bunch tail

Beam emittance preservation @ linac exit

- Wakefield effect compensation for 500pC beam, especially in 1-m long X-band structure, is developed by beam-based alignment.
- This strong collective effect is also notable in ~30m main linac C-band RF structures.
- > Beam optics matching is also helpful for optimized beam transportation.

The project emittance at the 790MeV linac exit is about 1 µmrad for a peak current of ~500A

Long-term stability of the SXFEL Linac

- The requirements for tolerance budget are fulfiled and beam jitters at the linac are well controlled in SXFEL-TF, including not only RF sources for longitudinal beam jitter, but also magnet regulations for transverse beam pointing jitter.
- > Long-term stability is also maintained by beam-based feedback toolkit.
- Day-night phenomenon of the beam orbit stability is observed during commissioning period and analyzing, the possible reasons are under investigations.

Commissioning EEHG and cascade HGHG at SXFEL-TF

Case 2: cascade HGHG scheme

Case 1: Echo-11, 20 and 30 Experiments at SXFEL

Results from s2e simulations

- Coherent radiation of EEHG-30 (at 8.8 nm) has been obtained at SXFEL
- Efforts are being made to realize the lasing and saturation of EEHG-20 and EEHG-30

Comparison of HGHG and EEHG

- By scanning the gap of U40, we can get coherent signals for different harmonics, which reflects the bunching factor distributions for HGHG and EEHG.
- Bunching factors for EEHG are lower than HGHG at low harmonics, but much higher than HGHG at the target harmonic.
- A cluster of bunching factor of EEHG can be continually shifted to higher harmonics by simply increasing the first dispersion strength (R¹₅₆).
- The bunching factor of EEHG can be maintained at a high level for high harmonics without increasing the energy modulation amplitudes.

Lasing of EEHG-11@24nm at SXFEL-TF

- With high peak power of the 2nd seed laser, coherent signals for both HGHG and EEHG appear at 11th harmonic
- The bandwidth of EEHG-11 is narrower than that of HGHG (due to the nonlinear chirp in the electron beam)
- Reducing the peak power of the 2nd seed laser, the HGHG-11 becomes very weak, while EEHG-11 is very strong, about two orders of magnitudes higher.

Radiation of EEHG-20 and EEHG-30 at SXFEL-TF

- Observed coherent signal for both HGHG and EEHG on the spectrometer
- It's hardly to see the coherent signal of HGHG for harmonic number larger than 16
- For EEHG it's easy to generate coherent signal at 20th and 30th harmonics of the seed by tuning the strength of the first chicane.

Case 2: cascade HGHG at SXFEL-TF

 Saturation of the first stage HGHG at 44nm has been achieved with peak power of hundreds of MWs. Stability (550 shots) Average pulse energy: 61µJ Stability: 9.4% (rms)

Amplification of the 2nd stage HGHG at 8.8nm

> Pulse energy >7.5 μ J, peak power > 30 MW, efforts are on going.

from the 2nd stage @ 8.8nm

User Facility: SXFEL-UF

A soft X-ray FEL user facility based on SXFEL-TF with two undulator line, a seeded FEL line and a SASE FEL line, is funded mainly by Shanghai local government, aiming at opening to users in 2020

User Facility: SXFEL-UF

Upgrade the SXFEL-TF to a user facility, consisting of a 1.5 GeV linac and two undulator FEL lines, one is based on SASE and another based on EEHG/HGHG cascade, as well as five end-stations.

FEL Parameters

	SASE line	Seeding line
Beam energy/GeV	1.5	1.5
FEL wavelength/nm	2 nm	3 nm
FEL pulse/fs	100 - 200	100 - 200
FEL power/MW	>100	>100
Rep. rate/Hz	50	50

SXFEL-UF Building

Upgrade SXFEL-TF to SXFEL-UF

- Increase the linac energy to 1.5GeV
- Upgrade the linac with laser heater and second bunch compressor
- Construct a SASE FEL line and a seeding FEL line
- Construct 5 experimental stations

SXFEL-UF Linac

Increase the linac energy to : ~1.5GeV

C-band Accelerating Unit and Laser Heater Components

SXFEL-UF Linac

Upgrade the SXFEL-TF linac with :

laser heater and 2nd magnetic bunch compressor

	E _{out}	σ _{z-out}	$\sigma_{\delta\text{-out}}$	E	$\phi_{\rm rf}/\theta_{\rm bend}$	R ₅₆	
	(MeV)	(mm)	(%)	(MV/m)	(Deg)	(mm)	
LO	130	0.86	0.14		-	-	
L1	273	0.86	1.44	27	-29.2	-	
X	256	0.86	1.51	19	180	-	
BC1	-	0.13	-		3.968	-48	1
L2	640	0.13	0.42	38	4	-	
BC2	-	0.07	-		2.217	-15	
L3	1500	0.07	0.028	38	6	-	

Add one more moveable chicane BC2, further increase the peak current to >700A

Schematic layout of SXFEL-UF laser heater

SXFEL-UF FEL lines

FEL2: SASE FEL line: build 10 IVU sections

SXFEL-UF Undulators

	Period (mm)	Period Number	Mini gap (mm)	Effective field (T)	Phase error (rms)	Quantity	Usage
Planar	40	73	8.75	0.97	<5°	4	Seeding, Radiator-1
Planar	23.5	125	8.75	0.64	<5°	10	Seeding, Radiator-2
EPU	30	98	4	0.8	<5°	2	Seeding, After burner
IVU	16	243	4	1.05	<5°	10	SASE, Radiator

SXFEL-UF Beamline and End-stations

The user facility enters the installation phase and is expected to be finished by end of this year, the beamline commissioning will start March next year.

ART

SXFEL-Parameters at Sample Positions

	SASE beamline	HGHG beamline
Energy range	1.2-12 nm (100-1000 eV)	2.4~24nm (50~500eV)
Pulse energy	330µJ @100eV,47µJ @620eV	64µJ @56eV , 5µJ @500eV
Photon flux /pulse	4.6x10 ¹¹ @620eV ~1.3x10 ¹³ @100eV	5x10 ⁹ @500eV ~2.9x10 ¹² @50eV
Energy resolution ($\Delta E/E$)	0.04%~0.2%	0.008%~0.04%
Energy resolving power Of diagnostic spectrometer (Ε/ΔΕ)	~3x10 ⁴ @620 eV	~4x10 ³ @200eV
Spot size	~3µm	~10µm
Pulse width (fs)	117fs@620eV	50 fs@300eV
Rep-rate	1~50 Hz	1~50 Hz

Summary

- X-ray FEL facilities, SXFEL based on a 1.5 GeV C-band copper linac and SHINE based on an 8 GeV CW SCRF linac, are under active development in China;
- The SXFEL is a phased facility, consisting of two funded independently projects of central and local governments, aiming at serving experiments in 2020;
- The SXFEL-TF was constructed from 2015 to 2018, its linac has achieved the design performance, and its FEL commissioning is in progress with the EEHG lasing at 24nm and two stage HGHG lasing at 8.8nm;
- The SXFEL-UF construction started in 2016, now most of the equipment and components are ready for installation, its commissioning is expected to start in March 2020.

Thank You for Your Attention !

谢谢!

