

Funded by the **European Union**

Linear polarisation via a Delta Afterburner for the CompactLight Facility

H. M. Castañeda Cortés¹, N.R. Thompson, D.J. Dunning

ASTeC and Cockcroft Institute, STFC Daresbury Laboratory, Warrington, United Kingdom.

¹hector.castaneda@stfc.ac.uk

Abstract

- We studied a configuration comprising a helical Super Conductive Undulator (SCU) followed by a delta afterburner (configured to generate linearly polarised light), beam-diverted scheme [1, 2], using the layout of the CompactLight facility[3].
- The trade-offs between the SCU and afterburner length, degree of polarisation and pulse energy are discussed.
- We found that a compromise between FEL performance, degree of polarisation and afterburner length must be done in order to fulfil the user requirements [4] by the H2020 CompactLight

Inverse taper, bunching and peak power at the end of the SCU
★ Inverse taper scan for different SCU and afterburner lengths to assess FEL performance(scheme in [1] and experimentally proven in [2])
★ Optimal taper⇒ $-0.004 \ge \Delta aw_0 \ge -0.006$ and $L_{SCU} = 18.12 \text{ m}$
▲ P _{SCU-end} suppression between 7% and 15% of P _{SCU-sat} .
Bunching at the end of the SCU around 80% bunching at saturation for the SCU.
★ Reduction of growth rate and increase in gain length due to optimal taper ⇒ suppression of peak power whilst bunching still growing [1]

 \star Shorter afterburners (1 to 3 sections) \Rightarrow 18%

Project.

Constraints on polarisation and CompactLight

Figure 1: Options to generate linearly polarised radiation.

Options to generate linearly polarised radiation

I. Undulator as stand-alone (delta undulator in planar configuration).

II. Linearly polarising afterburner: Helical SCU + delta afterburner (configured to generate linearly polarised light)

Figure 2: Pulse energy ratio for different AB and SCU lengths. Green dotted line (maximum ratio per afterburner length).

Compactness and FEL performance

- Option II is more compact as long as the length of the AB is less than 13 m.
- Afterburner length $\Rightarrow L_{AB} = L_{delta-sat} L_{SCU-sat}$.
- \bullet E _ pulse at the end of AB(-) $\rightarrow 17\% 68.4\%$ X $E_{\text{delta-sat}}$ (41.19 μ J).
- A compromise must be made between compactness and FEL performance \Rightarrow A shorter undulator line gives linearly polarized radiation but at the cost of reduced pulse energy

Impact of inverse taper

$\leq \max(\mathsf{E}_{\mathsf{end}}\mathsf{-}\mathsf{AB}/\mathsf{E}_{\mathsf{delta}}\mathsf{-}\mathsf{sat}) \leq \mathbf{62\%}$

★ A compromise must be made between compactness and FEL performance

Figure 5: Degree of polarisation for different number of afterburner sections.

Degree of pc	olaris	ation	
	4	Poolland	E 4 3

Beam and Undulator parameters

Undulator and beam parameters

Table 1: Undulator parameters (SCU and delta undu lator).

Undulator type	$\mathbf{a}_{\mathbf{W}}$	$\lambda_{\mathbf{u}}$ (m	m) I _{section}	(m) E _{ph} (keV)
SCU	0.907	9.85	2.27	16
Delta (AB)	0.546	13.83	2.28	16
Beam paramete	ers			
► E _{beam} = 5.5 G	GeV.	- T	► RMS sli	ce $\sigma_{\rm E}$ = 0.01%.
▶ Peak Current ▶ $\overline{\epsilon} = 0.2 \text{ mm} - \overline{\epsilon}$: = 5 kA rad.		► <i>β</i> = 9 m	

FEL figures of merit for option I.

Undulator type	L _{sat.} (m)	P _{sat.} (GW)	$\mathbf{E}_{sat.}(\mu \mathbf{J})$
SCU	15.61	9.53	52.11
Delta	<u>29.13</u>	7.53	<u>41.19</u>

Figure 3: Ratios of bunching and peak power at the end of the tapered SCU for different tapers and SCU lengths compared to untapered SCU at saturation. Blue contour lines (Bunching ratios), **Red** contour lines (Peak power ratios per SCU lengths).

- **Deg.** Pol. = $1 \frac{1 \text{ SCU-end}}{P_{\text{end-AB}}}$, [1]
- Deg. Pol. < 0, optimal taper, 1 AB section (more circularly polarised radiation).
- **55**% \leq Deg. Pol. \leq 82% for three sections AB, optimal taper (more linearly polarised radiation).
- Larger afterburners will generate radiation with larger degree of polarisation, but undulator line won't be compact (compromise).

Summary

- A study was carried out to show the feasibility of an afterburner generating linearly polarised light for the H2020 CompactLight Project.
- The afterburner option is more compact as long as the length of the afterburner is less than 13 m.
- A shorter afterburner makes the layout more compact. (saving up to 11 m) but at the cost of reduced pulse energy (around 17% the pulse energy of the stand-alone) delta at saturation) and a "more circular" degree of polarisation (optimal taper scenario).
- A compromise between the length of the afterburner to be designed, the FEL performance and degree of polarisation must be done.
- ♦ Variable polarisation (different configuration of after-

Delta afterburner and polarisation

Reduction in undulator line and FEL performance

AB length (m)	$\Delta L(m)$	E _{AB} /E _{delta-sat}
2.28	<u>10.9</u>	17.2 %
4.56	8.7	24.4%
6.84	6.4	31.3%
9.13	4.1	42.6%
<u>11.4</u>	<u>1.8</u>	<u>68.4%</u>

Figure 4: Ratios of pulse energies at the end of the afterburner (option II) compared to the saturation pulse energy obtained for option I (dotted black line: maximum ratio of pulse energies ratio per SCU length).

burner) as a natural step forward to be done.

References

[1] E. A. Schneidmiller and M. V. Yurkov, *Phys. Rev. Spec.* Top. - Accel. Beams, vol. 16, 08 2013.

[2] A. Lutman et al., Nat. Photonics, vol. 10, 05 2016. [3] G. D'Auria et al., in Proc. Int. Part. Accel. Conf. 2019. Melbourne, Australia: JACoW, 2019, p. TUPRB032.

[4] A. Mak, P. Salén, V. Goryashko, and J. A. 2018. [Online]. Avail-Tech. Rep., Clarke, https://www.compactlight.eu/uploads/Main/D2. able: 1_XLS_Specification.pdf

CompactLight is funded by the European Union's Horizon2020 Research and Innovation program under Grant Agreement No. 777431.

FEL 2019, International Free Electron Laser Conference, 21-25 August 2017, Hamburg, Germany http://CompactLight.eu