Motivation

In our previous work at TELBE [1,2], we developed a unique 100 kHz high repetition rate pulse-resolved arrival time monitor with high dynamic range and temporal resolution ~10 fs that overcome the major limitations of 4th generation light sources in terms of their use in time-resolved ultrafast experiments.

In this work, we are demonstrating our current development for pulse-resolved detection that operates at a few MHz repetition rates with online data analysis. The new technology is based on FPGA microarchitecture and KALYPSO detector [3].

Current System @ TELBE

Fig 1. Schematic of the pulse-resolved data acquisition system developed at TELBE with repetition rate = 100 kHz, ADC at 10 MHz with 8 channels, and a few 10 fs time resolution

Fig 2. EOS of 0.9 THz undulator pulse:
(a) Raw, unsorted data. Timing from delay stage position only.
(b) Added arrival time data from pulse-resolved diagnostics.
(c) Averaged data in 50 fs wide bins.

High-speed DAQ system

Fig 3. Block Diagram of the Heterogeneous FPGA/GPU DAQ and Processing System

Fig 4. A vector containing the arrival time information of the THz pulse. Data were taken at 100 kHz repetition rate.

OUTLOOK & next steps

➢ upgrade to 13 MHz repetition rate utilizing the KALYPSO detector v.3 and high throughput DAQ developments from KIT.
➢ Implementing 8 ADC channels at 1000 MHz and higher bit resolution.
➢ Supporting two arrival-time monitor inputs in parallel.

References: