

## **TUP042**



# ANALYSIS OF UNDULATOR RADIATION WITH ASYMMETRIC BEAM AND NON-PERIODIC MAGNETIC FIELD

Hussain Jeevakhan, National Institute of Technical Teachers' Training and Research, Bhopal, India Ganeswar Mishra, Physics Department, Devi Ahilya University, Indore, India

## Abstract

Harmonic undulator radiation at third harmonics with non periodic constant magnetic field has been analysed. Symmetric and asymmetric electron beam with homogeneous spread has been used to present viable solution for the resonance shift inherited in undulator with constant magnetic field. The out coming radiation, recovers shifts in resonance and regain its intensity with asymmetric electron beam and harmonic field.

 $H = [H_0 \kappa, b_0 H_0(sink_p + \Delta sink_l)z, 0]$ 

4.0x10 3.2x10 2.4x10 1.6x10<sup>7</sup> 8.0x10<sup>t</sup>



| $\xi_{3,4} = -\frac{\omega \kappa \kappa_1 \kappa}{2\gamma^2 (1 \pm l)\Omega_p}$ | Detuning paran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | neter with unit interactio                                                                                                                                                                  | line shape function<br>n time                                                                                                                        | 2.95                                                                                  |                                                                                                                                                                              |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ElectronAsymmetric $S(\vartheta + 0)$ electron beam $S'(\vartheta + 0)$          | bean with Gau<br>$\delta \vartheta, \varphi) = \int_{0}^{1} exp i \left\{ \delta \vartheta, \varphi \right\} = \int_{0}^{1} \tau exp i \left\{ \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{(\vartheta' + 4\pi mN\varepsilon_1)\tau} - \frac{m^2\pi^2\mu}{2}$ $(\vartheta' + 4\pi mN\varepsilon_1)\tau - \frac{m^2\pi^2\mu}{2}$                                               | $\frac{d^2\tau^2}{d\tau^2} + \varphi'\tau^3 \bigg\} d\tau$ $\frac{d^2\tau^2}{d\tau^2} + \varphi'\tau^3 \bigg\} d\tau$                                | Frequency<br>varying                                                                  | y Spectru<br>g κ and ι                                                                                                                                                       |
| Symmetric electron beam- $\epsilon_1$ =0                                         | $S(\vartheta + \delta\vartheta, \varphi) = \int_{0}^{0} S'(\vartheta + \delta\vartheta + \delta\vartheta + \delta\vartheta + \delta \varphi) = \int_{0}^{0} S'(\vartheta + \delta\vartheta + \delta\vartheta + \delta\vartheta + \delta \varphi + \delta \varphi + \delta \varphi + \delta \varphi$ | $\int_{0}^{1} \exp i \left\{ (\vartheta')\tau - \frac{m^2 \pi^2 \mu^2 \tau}{2} \right\}$ $\cdot \frac{1}{2} \tau \exp i \left\{ (\vartheta')\tau - \frac{m^2 \pi^2 \mu^2 \tau}{2} \right\}$ | $\begin{cases} 2 \\ -+ \varphi' \tau^3 \\ \frac{\tau^2}{2} + \varphi' \tau^3 \\ \frac{\tau^2}{2} + \varphi' \tau^3 \\ \frac{1}{2} d\tau \end{cases}$ | $4 \times 10^{7} - \frac{K_{1}}{0.00}0.00 \\0.00 \\0.00 \\0.025$                      | <ul> <li>ε<sub>1</sub></li> <li>κ</li> <li>0.0000</li> <li>0.0000</li> <li>0.0000</li> <li>0.0008</li> <li>0.0017</li> <li>0.0008</li> <li>0.0017</li> <li>0.0008</li> </ul> |
| Parameters<br>Undulator parameter                                                | Value/ Symbol<br>$K = \frac{b_0 e H_0}{\Omega_p m_0 c} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Parameters<br>Number of periods                                                                                                                                                             | Value/ Symbol<br>N=100                                                                                                                               | $\begin{array}{c} - \cdots & 0.05 \\ - & 0.075 \\ - & 0.075 \\ - & 0.075 \end{array}$ | 0.0017 0.0008<br>0.0017 0.0008                                                                                                                                               |
| Electron bean relativistic<br>parameter<br>Undulator wavelength                  | $\gamma = 20$ $\lambda = 5 cm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total time for<br>transverseUndulator frequency                                                                                                                                             | $\frac{2N\pi}{\Omega_u}$ $\Omega_p, \Omega_l$                                                                                                        | 1x10 <sup>7</sup> -                                                                   |                                                                                                                                                                              |
| Additional periodic harmonic field number                                        | <i>l=3</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit Interaction<br>Time                                                                                                                                                                    | au = t/T                                                                                                                                             | 0 2.95                                                                                |                                                                                                                                                                              |

 $\omega/\omega$ m at third harmonic mean energy  $\varepsilon_1$ 3.00 3.05  $\omega/\omega$ 

| Energy spread parameter  | $\mu = 4N\sigma = 0.01$ | Emission frequency | ω                            |
|--------------------------|-------------------------|--------------------|------------------------------|
| Harmonic field parameter | $K_1 = 0 - 0.075$       | Mean Energy        | $\varepsilon_1 = 0 - 0.0017$ |
| Magnitude of constant    | $\kappa = 0 - 0.00012$  | rms energy spread  | σ                            |
| magnetic field           |                         |                    |                              |

The present analysis gives solution both for intensity enhancement along with resonance shift of radiation simultaneously.

 $\triangleright$  The harmonic field can be generated by the addition of shims in the planar undulator structure.

 $\triangleright$  The constant magnetic field inherently present due to earth's magnetic field or error in the design of the undulator modifies spectrum of which can be compensated by using asymmetric electron beam

### Frequency Spectrum at third harmonic varying $\kappa$ , $\varepsilon_1$ and Harmonic field amplitude $K_1$ Journal of Modern Optics, vol. 56, p-REFERENCES 667,2009. R. Brinkmann, "The European XFEL 10. G. Mishra, Mona Gehlot, Jeeva Khan Project", Proc. FEL'06, Berlin, Germany, Hussain, Nuclear Instruments and Methods in 2006. Phy. Res. A, vol.603,p-495,2009. K. Zhukovsky, Optics 11. V.I.R. Niculescu, Minola R. Leonnovici, V. Communications353(2015)35-41. Babin, Anca Scarisoreanu, Rom. Journ. Phys., K. Zhukovsky, Laser and Particle Beams Vol.53, Nos. 5-6, P-775,2008. (2016), 34, 447–456. 12. Jeeva Khan Hussain, Vikesh Gupta, 4. G. Dattoli *et al* Journal of applied physics G.Mishra, IL Nuovo Cimento B, Vol 124 104,(2008)124507. **B**,2009. **5.** H. Jeevakhan, G Mishra, Optics 13. H Jeevakhan etal, Proceedings FEL 2015 Communications335 (2015) 126-128. **MOP004.** 6. N. Nakao etal. Nuclear Instruments and 14. J. D. Jackson, "Classical Electrodynamics", Methods in Physics, A, 407,p-474,1998. Wiley, New York, 1975. 7. Vikesh Gupta, G. Mishra, Nuclear Instr. and 15. G. Dattoli, et al, Lectures on FEL Theory and Meth. in Physics Research A,574,p-150,2007. **Related Topics, World Scientific, Singapore.** 8. Y. Yang, Wu Ding, Nuclear Instr. and Meth in Physics Research ,A, 407,p-60,1998. G. Mishra, Mona Gehlot, Jeevakhan Hussain, 9.