Keyword: alignment
Paper Title Other Keywords Page
TUP027 Modelling Crystal Misaligments for the X-ray FEL Oscillator FEL, cavity, undulator, simulation 110
 
  • R.R. Lindberg
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by U.S. Dept. of Energy Office of Sciences under Contract No. DE-AC02-06CH11357.
The X-ray FEL oscillator has the potential to be a revolutionary new light source providing unprecedented stability in a narrow bandwidth [1]. However, a detailed understanding of cavity tolerance and stability has only begun, and there are presently no suitable simulation tools. To address this issue, we have developed a fast FEL oscillator code that discretizes the field using a Gauss-Hermite mode expansion of the oscillator cavity. Errors in crystal alignment result in a mixing of the modes that is easily modeled with a loss and coupling matrix. We show first results from our code, including the effects of static and time-varying crystal misalignments.
[1] K.-J. Kim, Y. Shvyd’ko, and S. Reiche, PRL 100 244802 (2008)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP027  
About • paper received ※ 20 August 2019       paper accepted ※ 25 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WED01 Experience with Short-Period, Small Gap Undulators at the SwissFEL Aramis Beamline undulator, photon, FEL, electron 564
 
  • T. Schmidt, M. Aiba, A.D. Alarcon, C. Arrell, S. Bettoni, M. Calvi, A. Cassar, E. Ferrari, R. Follath, R. Ganter, N. Hiller, P.N. Juranič, C. Kittel, F. Löhl, E. Prat, S. Reiche, T. Schietinger, D. Voulot, U.H. Wagner
    PSI, Villigen PSI, Switzerland
  • N.J. Sammut
    University of Malta, Faculty of Engineering, Msida, Malta
 
  The SwissFEL Aramis beamline provides hard X-ray FEL radiation down to 1 Angström with 5.8 GeV and short period, 15 mm, in-vacuum undulators (U15). To reach the maximum designed K-value of 1.8 the U15s have to be operated with vacuum gaps down to 3.0 mm. The thirteen-undulator modules are 4 m long and each of them is equipped with a pair of permanent magnet quadrupoles at the two ends, aligned magnetically to the undulator axis. Optical systems and dedicated photon diagnostics are used to check the alignment and improve the K-value calibration. In this talk the main steps of the undulator commissioning will be recalled and a systematic comparison between the magnetic results and the electron and photon based measurements will be reported to highlight achievements and open issues.  
slides icon Slides WED01 [13.825 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WED01  
About • paper received ※ 28 August 2019       paper accepted ※ 06 November 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP002 Beam Based Alignment in all Undulator Beamlines at European XFEL FEL, undulator, quadrupole, electron 592
 
  • M. Scholz, W. Decking
    DESY, Hamburg, Germany
  • Y. Li
    EuXFEL, Hamburg, Germany
 
  The Free Electron Laser European XFEL aims at delivering X-rays from 0.25 keV up to 25 keV out of three SASE undulators. A good overlap of photon and electron beams is indispensable to obtain good lasing performance, especially for the higher photon energies. Thus the quadrupole magnets in the undulators must be aligned as good as possible on a straight line. This can only be realized with a beam based alignment procedure. In this paper we will report on the method that was performed at the European XFEL. We will also discuss our results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP002  
About • paper received ※ 20 August 2019       paper accepted ※ 12 September 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP068 LCLS-II Extruded Aluminum Undulator Vacuum Chambers — New Approaches to an Improved Aperture Surface Finish undulator, vacuum, electron, FEL 719
 
  • G.E. Wiemerslage, P.K. Den Hartog, J. Qian, M. White
    ANL, Lemont, Illinois, USA
 
  Funding: Work at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract # DE-AC02-06CH11357.
The Linac Coherent Light Source, (LCLS) the world’s first x-ray free electron laser (FEL) became operational in 2009. The Advanced Photon Source contributed to the original project by designing and building the undulator line. Two slightly different variations of these chambers were required for LCLS-II: one for a soft X-ray (SXR) undulator line, and one for a hard X-ray (HXR) undulator line. Because of the extremely short electron bunch length, a key physics requirement was to achieve the best possible surface finish within the chamber aperture. Improvements to our earlier fabrication methods allowed us to meet the critical surface roughness finish defined by RF impedance requirements. We were able to improve the surface finish from an average of 812 nm rms to 238 nm rms. The average longitudinal surface roughness slope of all chambers was to be less than 20 mrad. We achieved an average longitudinal surface roughness slope of 8.5 mrad with no chamber exceeding 20 mrad. In the end, sixty-four undulator vacuum chambers and alignment systems were delivered to SLAC for the LCLS-II Upgrade project. Here we will report on the process improvements for the fabrication of these chambers.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP068  
About • paper received ※ 16 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)