Author: Zhao, Z.
Paper Title Page
WEP063 The Preliminary Study of a Pre-Bunched Terahertz Free Electron Laser by a Velocity Bunching Scheme 477
 
  • R. Huang, Q.K. Jia, H.T. Li, Z. Zhao
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: Work supported by the National Natural Science Foundation of China Grant Number 11805200
Terahertz (THz) radiation has broad applications in biological sciences, materials imaging and radar communications and so on. High-power, frequency-adjustable THz radiation sources are desired. An electron beam, generated in a photoinjector and bunched at terahertz (THz) frequency, will excite a coherent THz radiation when entering an undulator. The radiation power mainly depends on the particle number and the bunching factor of the electron beam, which is limited by the space charge effect among the microbunches and the total rf phase width the macrobunch occupied. Previously we have designed a pre-bunched THz free electron laser (FEL) with the radiation frequency covering 0.5-5 THz. While the radiation intensity for the lower frequency (below 1~THz) is not very high because of the large energy spread and the low bunching factor. We will report a THz FEL by a velocity bunching scheme, which could realize more highly bunched beam especially in the low THz frequency region. The physical design of the electron source is described in detail.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP063  
About • paper received ※ 19 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)