Paper |
Title |
Page |
TUA04 |
Harmonic Lasing Experiment at the European XFEL |
29 |
|
- E. Schneidmiller, F. Brinker, W. Decking, M.W. Guetg, S. Liu, D. Nölle, M. Scholz, M.V. Yurkov, I. Zagorodnov
DESY, Hamburg, Germany
- G. Geloni, N. Gerasimova, J. Grünert, S. Karabekyan, N.G. Kujala, J. Laksman, Y. Li, J. Liu, Th. Maltezopoulos, I. Petrov, L. Samoylova, S. Serkez, H. Sinn, F. Wolff-Fabris
EuXFEL, Hamburg, Germany
|
|
|
Harmonic lasing is an opportunity to extend the photon energy range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide a much more intense, stable, and narrow-band FEL beam. Another interesting application is Harmonic Lasing Self-Seeding (HLSS) that allows to improve the longitudinal coherence and spectral power of a Self-Amplified Spontaneous Emission (SASE) FEL. This concept was successfully tested at FLASH in the range of 4.5 - 15 nm and at PAL XFEL at 1 nm. In this contribution we present recent results from the European XFEL where we successfully demonstrated operation of HLSS FEL at 5.9 Angstrom and 2.8 Angstrom, in the latter case obtaining both 3rd and 5th harmonic lasing.
|
|
|
Slides TUA04 [1.174 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-TUA04
|
|
About • |
paper received ※ 20 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUP056 |
Feasibility Studies of the 100 keV Undulator Line of the European XFEL |
172 |
|
- E. Schneidmiller, V. Balandin, W. Decking, M. Dohlus, N. Golubeva, D. Nölle, M.V. Yurkov, I. Zagorodnov
DESY, Hamburg, Germany
- G. Geloni, Y. Li, S. Molodtsov, J. Pflüger, S. Serkez, H. Sinn, T. Tanikawa, S. Tomin
EuXFEL, Hamburg, Germany
|
|
|
The European XFEL is a multi-user X-ray FEL facility based on superconducting linear accelerator. Presently, three undulators (SASE1, SASE2, SASE3) deliver high-brightness soft- and hard- X-ray beams for users. There are two empty undulator tunnels that were originally designed to operate with spontaneous radiators. We consider instead a possible installation of two FEL undulators. One of them (SASE4) is proposed for the operation in ultrahard X-ray regime, up to the photon energy of 100 keV. In this contribution we present the results of the first feasibility studies of this option.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-TUP056
|
|
About • |
paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUP058 |
First Characterization of the Photon Beam at the European XFEL in July, 2017 |
180 |
|
- V. Balandin, B. Beutner, F. Brinker, W. Decking, M. Dohlus, L. Fröhlich, U. Jastrow, R. Kammering, T. Limberg, D. Nölle, M. Scholz, A.A. Sorokin, K.I. Tiedtke, M.V. Yurkov, I. Zagorodnov
DESY, Hamburg, Germany
- U. Boesenberg, W. Freund, J. Grünert, A. Koch, N.G. Kujala, J. Liu, Th. Maltezopoulos, M. Messerschmidt, I. Petrov, L. Samoylova, H. Sinn
EuXFEL, Schenefeld, Germany
|
|
|
North branch of the European XFEL, SASE1, produced first light on May 3rd, 2017, and XFEL operation has been gradually improved then. First characterization of the photon beam has been performed in July / August 2017, just before an official starting date of user experiments (September 1st, 2017). Energy of the electron beam was 14 GeV, bunch charge was 500 pC, photon energy was 9.3 keV. With photon diagnostics available at that time (X-ray gas monitor (XGM) and FEL imager) we measured the gain curve and traced evolution of the FEL radiation mode along the undulator. An important conclusion is that experimental results demonstrate reasonable agreement with baseline parameters. Developed techniques of the photon beam characterization also provided solid base for identification of the problems and means for improving SASE FEL tuning and operation.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-TUP058
|
|
About • |
paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUP060 |
An Advanced Compression Option for the European XFEL |
187 |
|
- I. Zagorodnov, M. Dohlus, E. Schneidmiller, M.V. Yurkov
DESY, Hamburg, Germany
|
|
|
An advanced compression scheme which allows to obtain a high peak current while preserving the low slice emittance is considered. The beam is compressed weakly in the bunch compressors and the current is increased by eSASE setup at the entrance of the undulator line. It is shown by numerical studies that such approach allows to reduce harmful collective effects in the bunch compressors and in the transport line. Simulations of FEL physics confirm the possibility to obtain a high level of SASE radiation at the ultra-hard photon energy level of 100 keV.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-TUP060
|
|
About • |
paper received ※ 19 August 2019 paper accepted ※ 25 August 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUP061 |
Super-X: Simulations for Extremely Hard X-Ray Generation With Short Period Superconducting Undulators for the European XFEL |
191 |
|
- S. Serkez, G. Geloni, S. Karabekyan, Y. Li, T. Tanikawa, S. Tomin, F. Wolff-Fabris
EuXFEL, Hamburg, Germany
- C. Boffo
Bilfinger Noell GmbH, Wuerzburg, Germany
- S. Casalbuoni
KIT, Eggenstein-Leopoldshafen, Germany
- M. Dohlus, E. Schneidmiller, M.V. Yurkov, I. Zagorodnov
DESY, Hamburg, Germany
- A. Trebushinin
BINP, Novosibirsk, Russia
|
|
|
The European XFEL is a high-repetition multi-user facility with nominal photon energy range covering almost 3 orders of magnitude: 250 eV - 25 keV. In this work we explore the possibility to extend the photon energy range of the facility up to 100 keV via combination of superconducting undulator technology, period doubling and harmonic lasing, thus allowing for excellent tunability. To this purpose, we propose a dedicated FEL line, discuss its overall concept and provide analytical and numerical estimations of its expected performance.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-TUP061
|
|
About • |
paper received ※ 20 August 2019 paper accepted ※ 25 August 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUP062 |
Two Colors at the SASE3 Line of the European XFEL: Project Scope and First Measurements |
195 |
|
- S. Serkez, G. Geloni, N. Gerasimova, J. Grünert, S. Karabekyan, A. Koch, J. Laksman, Th. Maltezopoulos, T. Mazza, M. Meyer, S. Tomin
EuXFEL, Hamburg, Germany
- W. Decking, L. Fröhlich, V. Kocharyan, Y.A. Kot, E. Saldin, E. Schneidmiller, M. Scholz, M.V. Yurkov, I. Zagorodnov
DESY, Hamburg, Germany
- M. Huttula
University of Oulu, Oulu, Finland
- E. Kukk
University of Turku, Turku, Finland
|
|
|
The European XFEL is a high-repetition rate facility that generates high-power SASE radiation pulses in three beamlines. A joint upgrade project, with Finnish universities, to equip the SASE3 beamline with a chicane has been recently approved to generate two SASE pulses with different photon energies and temporal separation. In this work we report the status of the project, its expected performance, and recent experimental results. Additionally, we discuss methods to diagnose the properties of the generated radiation.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-TUP062
|
|
About • |
paper received ※ 20 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|