Paper | Title | Page |
---|---|---|
MOA03 | First Lasing at the CAEP THz FEL Facility | 11 |
|
||
China Academy of Engineering Physics terahertz free electron laser (CAEP THz FEL, CTFEL) is the first THz FEL user facility in China, which was an oscillator type FEL. This THz FEL facility consists of a GaAs photocathode high-voltage DC gun, a superconducting RF linac, a planar undulator and a quasi-concentric optical resonator. The terahertz laser’s frequency is continuous adjustable from 0.7 THz to 4.2 THz. The average power is more than 10 W and the micro-pulse power is more than 0.3 MW. In this paper, the specific parameters and operation status of CTFEL are presented. Finally, some user experiments are introduced briefly. | ||
![]() |
Slides MOA03 [3.771 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-MOA03 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 18 September 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP015 | Design of High-Repetition Terahertz Super-Radiation Based on CAEP THz FEL Superconducting Beamline | 73 |
|
||
China Academy of Engineering Physics terahertz free electron laser (CAEP THz FEL, CTFEL) is the first THz FEL oscillator in China. CTFEL spectrum covers from 0.7 THz to 4.2 THz. However, there are still many applications requiring lower frequency. The super-radiation of the ultra-short electron beam bunches could generate ultra-fast, carrier-envelope-phase-stable, and high-field terahertz. The coherent diffraction/transition radiation (CDR/CTR) and coherent undulator radiation (CUR) can be also synchronized naturally. In this paper, the dynamic and the design of the super-radiation are introduced. The main parameters of the CDR/CTR and CUR are also discussed. A multi-color pump-probe system based on super-radiation is also proposed.
Work supported by National Natural Science Foundation of China with grant (11575264, 11605190 and 11805192), Innovation Foundation of CAEP with grant (CX2019036, CX2019037) |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP015 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEP027 | A Fast and Accurate Method to Shim Undulator Using Multi-Objective GA | 378 |
|
||
Funding: National Natural Science Foundation of China under grant of 11505174, 11505173 and 11605190 GA (Genetic Algorithm) is one of the most excellent methods to search the optimal solution for a problem, which has been applied to solve various problems. It is hard to estimate shim applied on raw undulator precisely. There are many methods have been developed to solve the problem. In this proceeding, we proposed a fast and accurate method to conclude the shim using multi-objective GA. A multi-objective objective function was set, and multi-objective optimization was also implemented. The evolution time is reduced by setting optimal evolution parameters. To demonstrate the method, we also finished some test on a prototype undulator U38. As a result, it can be achieved only by shimming three times that all the parameters of trajectory center deviation, peak-to-peak error and phase error satisfied the requirements. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP027 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |