Paper | Title | Page |
---|---|---|
WEP006 | A PolariX TDS for the FLASH2 Beamline | 328 |
|
||
Transverse Deflecting RF-Structures (TDS) are successfully used for longitudinal diagnostic purposes at many Free-Electron Lasers (FEL) (LCLS, FLASH, EU-XFEL, FERMI). Moreover, by installing a TDS downstream of the FEL undulators and placing the measurement screen in a dispersive section, the temporal photon pulse structure can be estimated, as was demonstrated at LCLS and sFLASH. Here we describe the installation of a variable polarization X-band structure (PolariX TDS [1]) downstream of the FLASH2 undulators. The installation of such a TDS enables longitudinal phase space measurements and photon pulse reconstructions, as well as slice emittance measurements in both planes using the same cavity due to the unique variable polarization of the PolariX TDS.
[1] P. Craievich et al., "Status of the PolariX-TDS Project", in Proc. IPAC’18, Vancouver, Canada (2018) |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP006 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEP036 | The PolariX-TDS Project: Bead-Pull Measurements and High-Power Test on the Prototype | 396 |
|
||
A collaboration between DESY, PSI and CERN has been established to develop and build an advanced modular X- band transverse deflection structure (TDS) system with the new feature of providing variable polarization of the deflecting force. The prototype of the novel X-band TDS, the Polarizable X-band (PolariX) TDS, was fabricated at PSI following the high-precision tuning-free production process developed for the C-band Linac of the SwissFEL project. Bead-pull RF measurements were also performed at PSI to verify, in particular, that the polarization of the dipole fields does not have any rotation along the structure. The high-power test was performed at CERN and now the TDS is at DESY and has been installed in FLASHForward, where the first streaking experience with beam will be accomplished. We summarize in this paper the status of the project, the results of the bead-pull measurements and the high power test. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP036 | |
About • | paper received ※ 21 August 2019 paper accepted ※ 26 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THP003 | Arbitrary Order Perturbation Theory for a Time-Discrete Model of Micro-Bunching Driven by Longitudinal Space Charge | 596 |
|
||
A well established model for studying the micro-bunching instability driven by longitudinal space charge in ultra-relativistic bunches in FEL-like beamlines can be identified as a time-discrete Vlasov system with general drift maps and Poisson type collective kick maps. Here we present an arbitrary order perturbative approach for the general system and the complete all-orders solution for a special example. For this example we benchmark our theory against our Perron-Frobenius tree-code. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP003 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FRA03 | FLASH - Status and Upgrades | 776 |
|
||
FLASH, the Free-Electron Laser at DESY in Hamburg was the first FEL user facility in the XUV and soft X-ray range. The superconducting RF technology allows to produce several thousand SASE pulses per second with a high peak and average brilliance. It developed to a user facility with a 1.25 GeV linear accelerator, two undulator beamlines running in parallel, and a third electron beamline containing the FLASHForward plasma wakefield experiment. Actual user operation and FEL research are discussed. New concepts and a redesign of the facility are developed to ensure that also in future FLASH will allow cutting-edge research. Upgrade plans are discussed in the contribution. | ||
![]() |
Slides FRA03 [10.554 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-FRA03 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 28 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |