Paper |
Title |
Page |
TUP091 |
Start-to-End Simulation of the NSRRC Seeded VUV FEL |
266 |
|
- S.Y. Teng
NTHU, Hsinchu, Taiwan
- C.H. Chen, W.K. Lau, A.P. Lee
NSRRC, Hsinchu, Taiwan
|
|
|
A free electron laser (FEL) driven by a high brightness electron linac system has been proposed to generate ultrashort intense coherent radiation in the vacuum ultraviolet region. It is a third harmonic high-gain high harmonic generation (HGHG) FEL for generation of VUV radiation with wavelength at 66.7 nm from a 20-mm period length helical undulator. A 200-nm seed laser is used for beam energy modulation in a 10-periods helical undulator of 24-mm period length. A small chicane is placed between the two undulators to optimize power growth in the radiator. In this study, we perform start-to-end simulation to foresee the operational performance of the test facility and preliminary results are presented.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-TUP091
|
|
About • |
paper received ※ 20 August 2019 paper accepted ※ 28 August 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THP030 |
An Updated Design of the NSRRC Seeded VUV Free Electron Laser Test Facility |
651 |
|
- W.K. Lau, C.K. Chan, C.-H. Chang, C.-C. Chang, L.-H. Chang, C.H. Chen, M.C. Chou, P.J. Chou, F.Z. Hsiao, K.T. Hsu, H.P. Hsueh, K.H. Hu, C.-S. Hwang, J.-Y. Hwang, J.C. Jan, C.K. Kuan, A.P. Lee, M.-C. Lin, G.-H. Luo, K.L. Tsai
NSRRC, Hsinchu, Taiwan
- A. Chao, J. Wu
SLAC, Menlo Park, California, USA
- S.Y. Teng
NTHU, Hsinchu, Taiwan
|
|
|
In this report, we present an updated design of the facility which is a 200 nm seeded, HGHG FEL driven by a 250 MeV high brightness electron linac system with dogleg bunch compressor for generation of ultrashort intense coherent radiation in the vacuum ultraviolet region. It employs a 10-periods helical undulator for enhancement of beam energy modulation and a helical undulator of 20 mm period length as the radiator (i.e. THU20) to produce hundreds of megawatts radiation with wavelength as short as 66.7 nm. An optional planar undulator can be added to generate odd harmonics (e.g. 22.2 nm, 13.3 nm etc.) of the fundamental. The facility layout and expected FEL output performance is reported.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-THP030
|
|
About • |
paper received ※ 20 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|