Author: Sudar, N.S.
Paper Title Page
TUT01 Superradiance and Stimulated-Superradiant Emission of Bunched Electron Beams 288
 
  • A. Gover, R. Ianconescu
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv, Israel
  • C. Emma, P. Musumeci, C. Pellegrini, N.S. Sudar
    UCLA, Los Angeles, USA
  • A. Friedman
    Ariel University, Ariel, Israel
  • R. Ianconescu
    Shenkar College of Engineering and Design, Ramat Gan, Israel
 
  Funding: We acknowledge support of the Israel Science Foundation and the German Israeli Projects Foundation (DIP).
We outline the fundamental processes of coherent radiation emission from a bunched charged particles beam [1]. In contrast to spontaneous emission of radiation from a random electron beam that is proportional to the number of particles N, a pre-bunched electron beam emits spontaneously coherent radiation proportional to N2 through the process of (spontaneous) superradiance (SP-SR) (in the sense of Dicke’s [2]). The SP-SR emission of a bunched electron beam can be even further enhanced by a process of stimulated-superradiance (ST-SR) in the presence of a seed injected radiation field. These coherent radiation emission processes are presented in term of a radiation mode expansion model, applied to general free electron radiation schemes: Optical-Klystron, HGHG, EEHG, and coherent THz sources based on synchrotron radiation, undulator radiation or Smith-Purcell radiation. The general model of coherent spontaneous emission is also extended to the nonlinear regime - Tapering Enhanced Stimulated Superradiance (TESSA) [3], and related to the tapered wiggler section of seed-injected FELs. In X-Ray FELs these processes are convoluted with other effects, but they are guidelines for strategies of wiggler tapering efficiency enhancement.
[1] A. Gover et al., Rev. Mod. Phys. https://arxiv.org/abs/1810.07566v3 (2019)
[2] R. H. Dicke, Physical Review 93, 99 (1954)
[3] N. Sudar et al., P.R.L. 117, 174801 (2016)
 
slides icon Slides TUT01 [11.391 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUT01  
About • paper received ※ 20 August 2019       paper accepted ※ 29 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP073 Status Update for the High Gain High Efficiency TESSA-266 Experiment 730
 
  • Y. Park, D.K. Dang, P.E. Denham, P. Musumeci, N.S. Sudar
    UCLA, Los Angeles, USA
  • R.B. Agustsson, T.J. Campese, I.I. Gadjev, A.Y. Murokh
    RadiaBeam, Marina del Rey, California, USA
  • C.C. Hall, S.D. Webb
    RadiaSoft LLC, Boulder, Colorado, USA
  • Y. Sun, A. Zholents
    ANL, Lemont, Illinois, USA
 
  Funding: DOE grant No. DE-SC0009914 and DE-SC0018559
Tapering Enhanced Stimulated Superradiant Amplification (TESSA) allows to increase the efficiency of Free Electron Laser (FEL) based radiation generation from ~0.1% to 10% by using intense seed laser pulses, strongly tapered undulators and prebunched electron beams [1]. Initial results validating this method have already been obtained at 10 µm wavelength at Brookhaven National Laboratory [2]. We will present the design of an experiment to demonstrate the TESSA scheme at high gain and shorter wavelength (266 nm) using the APS injector linac at Argonne National Labor-atory (ANL) to obtain conversion efficiency of up to 10%. Undulator and focusing lattice design, as well as beam dynamics and diagnostics for this experiment will be discussed. An extension of the experiment to include the possibility of multi-bunch linac operation and an optical cavity around the undulator to operate in the TESSO regime will also be presented [3].
[1] J. Duris et al., New J. Phys. 17 063036 (2015)
[2] N Sudar et al., Physical review letters, 117, 174801 (2016)
[3] J. Duris et al., Physical Review Accelerators and Beams 21, 080705 (2018)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP073  
About • paper received ※ 20 August 2019       paper accepted ※ 29 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)