Author: Sato, T.
Paper Title Page
TUP033 Q-Switching of X-Ray Optical Cavities by Using Boron Doped Buried Layer Under a Surface of a Diamond Crystal 122
 
  • J. Krzywiński, Y. Feng, A. Halavanau, Z. Huang, A.M. Kiss, J.P. MacArthur, G. Marcus, T. Sato, D. Zhu
    SLAC, Menlo Park, California, USA
 
  Improvement of the longitudinal coherence of X-ray Free Electron Lasers has been the subject of many recent investigations. The XFEL oscillator (XFELO) and Regenerative Amplifier Free-Electron Laser (RAFEL) schemes offer a pathway to fully coherent, high brightness X-ray radiation. The XFELO and RAFEL consist of a high repetition rate electron beam, an undulator and an X-ray crystal cavity to provide optical feedback. The X-ray cavity will be based on diamond crystals in order to manage a high thermal load. We are investigating a ’Q switching’ mechanism that involves the use of a ’Bragg switch’ to dump the X-ray pulse energy built-up inside an X-ray cavity. In particular, one can use an optical laser to manipulate the diamond crystal lattice constant to control the crystal reflectivity and transmission. It has been shown that a 9 MeV focused boron beam can create a buried layer, approximately 5 microns below surface, with a boron concentration up to 1021 atoms/cm3. Here, we present simulations showing that absorbing laser pulses by a buried layer under the crystal surface would allow creating a transient temperature profile which would be well suited for the ’Q switching’ scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP033  
About • paper received ※ 21 August 2019       paper accepted ※ 29 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)