Author: Roussel, E.
Paper Title Page
THP013 User Operation of Sub-Picosecond THz Coherent Transition Radiation Parasitic to a VUV FEL 621
 
  • S. Di Mitri, N. Adhlakha, E. Allaria, L. Badano, G. De Ninno, P. Di Pietro, G. Gaio, L. Giannessi, G. Penco, A. Perucchi, P. Rebernik Ribič, E. Roussel, S. Spampinati, C. Spezzani, M. Trovò, M. Veronese
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • G. De Ninno
    University of Nova Gorica, Nova Gorica, Slovenia
  • L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • S. Lupi
    Coherentia, Naples, Italy
  • S. Lupi
    Sapienza University of Rome, Roma, Italy
  • F. Piccirilli
    IOM-CNR, Trieste, Italy
  • E. Roussel
    PhLAM/CERLA, Villeneuve d’Ascq, France
  • E. Roussel
    PhLAM/CERCLA, Villeneuve d’Ascq Cedex, France
 
  Coherent transition radiation is enhanced in intensity and extended in frequency spectral range by the electron beam manipulation in the beam dump beam line of the FERMI FEL, by exploiting the interplay of coherent synchrotron radiation instability and electron beam optics [1]. Experimental observations at the TeraFERMI beamline [2] confirm intensity peaks at around 1 THz and extending up to 8.5 THz, for up to 80 µJ pulse energy integrated over the full bandwidth. By virtue of its implementation in an FEL beam dump line, this work might stimulate the development of user-oriented multi-THz beamlines parasitic and self-synchronized to VUV and X-ray FELs.
[1] S. Di Mitri et al., Scientific Reports, 8, 11661 (2018).
[2] A. Perucchi et al., Synch. Rad. News 4, 30 (2017).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP013  
About • paper received ※ 29 July 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOA02 First Lasing of a Free Electron Laser in the Soft X-Ray Spectral Range with Echo Enabled Harmonic Generation 7
 
  • E. Allaria, A. Abrami, L. Badano, M. Bossi, N. Bruchon, F. Capotondi, D. Castronovo, M. Cautero, P. Cinquegrana, M. Coreno, I. Cudin, M.B. Danailov, G. De Ninno, A.A. Demidovich, S. Di Mitri, B. Diviacco, W.M. Fawley, M. Ferianis, L. Foglia, G. Gaio, F. Giacuzzo, L. Giannessi, S. Grulja, F. Iazzourene, G. Kurdi, M. Lonza, N. Mahne, M. Malvestuto, M. Manfredda, C. Masciovecchio, N.S. Mirian, I. Nikolov, G. Penco, E. Principi, L. Raimondi, P. Rebernik Ribič, R. Sauro, C. Scafuri, P. Sigalotti, S. Spampinati, C. Spezzani, L. Sturari, M. Svandrlik, M. Trovò, M. Veronese, D. Vivoda, M. Zaccaria, D. Zangrando, M. Zangrando
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • H.-H. Braun, E. Ferrari, E. Prat, S. Reiche
    PSI, Villigen PSI, Switzerland
  • N. Bruchon
    University of Trieste, Trieste, Italy
  • M. Coreno
    CNR-ISM, Trieste, Italy
  • M.-E. Couprie, A. Ghaith
    SOLEIL, Gif-sur-Yvette, France
  • G. De Ninno
    University of Nova Gorica, Nova Gorica, Slovenia
  • C. Feng
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • F. Frassetto, L.P. Poletto
    LUXOR, Padova, Italy
  • D. Garzella
    CEA, Gif-sur-Yvette, France
  • V. Grattoni
    DESY, Hamburg, Germany
  • E. Hemsing
    SLAC, Menlo Park, California, USA
  • P. Miotti
    CNR-IFN, Padova, Italy
  • G. Penn
    LBNL, Berkeley, California, USA
  • M.A. Pop
    MAX IV Laboratory, Lund University, Lund, Sweden
  • E. Roussel
    PhLAM/CERCLA, Villeneuve d’Ascq Cedex, France
  • T. Tanikawa
    EuXFEL, Schenefeld, Germany
  • D. Xiang
    Shanghai Jiao Tong University, Shanghai, People’s Republic of China
 
  We report on the successful operation of a Free Electron Laser (FEL) in the Echo Enabled Harmonic Generation (EEHG) scheme at the FERMI facility at Sincrotrone Trieste. The experiment required a modification of the FEL-2 undulator line which, in normal operation, uses two stages of high-gain harmonic generation separated by a delay line. In addition to a new seed laser, the dispersion in the delay-line was increased, the second stage modulator changed and a new manipulator installed in the delay-line chicane hosting additional diagnostic components. With this modified setup we have demonstrated the first evidence of strong exponential gain in a free electron laser operated in EEHG mode at wavelengths as short as 5 nm.  
slides icon Slides MOA02 [5.133 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-MOA02  
About • paper received ※ 21 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOC03
Laser Heater Impact on the Performances of Seeded High Gain FELs  
 
  • E. Ferrari
    PSI, Villigen PSI, Switzerland
  • E. Roussel
    PhLAM/CERCLA, Villeneuve d’Ascq Cedex, France
 
  Laser-heater systems have been demonstrated to be an important component for the accelerators that drive high gain free electron laser (FEL) facilities, dramatically improving the performance of such lightsources. They are nowadays routinely used in most of the operating FEL facilities around the world. The improvement is achieved by suppressing the longitudinal microbunching instability via a controllable increase in the slice energy spread. The system has also been extensively used to manipulate the properties of the electron beam e.g., to produce short pulses of radiation, or for multicolor FEL generation. In this contribution we focus on the usage and impact of such system on a seeded FEL facility, with particular focus on the possibility of efficient generation of short wavelength radiation with unexpected power levels.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP015 Electro-Optical Bunch Length Detection at the European XFEL 360
 
  • B. Steffen, M.K. Czwalinna, C. Gerth
    DESY, Hamburg, Germany
  • S. Bielawski, C. Evain, E. Roussel, C. Szwaj
    PhLAM/CERCLA, Villeneuve d’Ascq Cedex, France
 
  The electro-optical bunch length detection system based on electro-optic spectral decoding has been installed and is being commissioned at the European XFEL. The system is capable of recording individual longitudinal bunch profiles with sub-picosecond resolution at a bunch repetition rate of 1.13MHz . Bunch lengths and arrival times of entire bunch trains with single-bunch resolution have been measured as well as jitter and drifts for consecutive bunch trains. In addition, we are testing a second electro-optical detection strategy, the so-called photonic time-stretching, which consists of imprinting the electric field of the bunch onto a chirped laser pulse, and then "stretching" the output pulse by optical means. As a result, we obtain is a slowed down "optical replica" of the bunch shape, which can be recorded using a photodiode and GHz-range acquisition. These tests are performed in parallel with the existing spectral decoding technique based on a spectrometer in order to allow a comparative study. In this paper, we present first results for both detection strategies from electron bunches after the second bunch compressor of the European XFEL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP015  
About • paper received ※ 24 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOC02
Microbunching Instability and Laser Heater Usage in Seeded Free-Electron Lasers  
 
  • E. Roussel
    PhLAM/CERLA, Villeneuve d’Ascq, France
  • E. Ferrari
    PSI, Villigen PSI, Switzerland
 
  Seeded FELs are tremendous coherent sources in the EUV and soft X-rays domain. They are driven by high-quality electron beams produced in linear accelerators. However, spatio-temporal instabilities can develop in the magnetic compressor chicanes degrading the beam quality. The so-called microbunching instability is a major limitation for the generation of coherent pulses in the X-ray domain. Laser-heater systems are nowadays routinely used to control the electron beam energy spread in order to dump this instability. In the last years, there have proven to be also a powerful device to influence the FEL amplification process. We present here several LH usages in FELs with specific examples achieved on seeded FELs such as improving the harmonic up-conversion process in HGHG seeded FEL, generating short FEL pulses or also producing multi-color FEL pulses. We also report on microbunching instability issues and its effect on FEL spectral quality with strategies to benefit from that. Direct observation of the microbunching level in the electron beam remains also an open challenge. Innovative strategies to measure the electron beam and potentially its microbunching will be presented.  
slides icon Slides MOC02 [8.713 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP048 Progress Towards Laser Plasma Electron Based Free Electron Laser on COXINEL 684
 
  • M.-E. Couprie, T. André, F. Blache, F. Bouvet, F. Briquez, Y. Dietrich, J.P. Duval, M. El Ajjouri, A. Ghaith, C. Herbeaux, N. Hubert, M. Khojoyan, C.A. Kitégi, M. Labat, N. Leclercq, A. Lestrade, A. Loulergue, O. Marcouillé, F. Marteau, D. Oumbarek Espinos, P. Rommeluère, M. Sebdaoui, K.T. Tavakoli, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
  • I.A. Andriyash, V. Malka, S. Smartzev
    Weizmann Institute of Science, Physics, Rehovot, Israel
  • C. Benabderrahmane
    ESRF, Grenoble, France
  • S. Bielawski, C. Evain, E. Roussel, C. Szwaj
    PhLAM/CERLA, Villeneuve d’Ascq, France
  • S. Corde, J. Gautier, J.-P. Goddet, O.S. Kononenko, G. Lambert, K. Ta Phuoc, A. Tafzi, C. Thaury
    LOA, Palaiseau, France
 
  Laser plasma acceleration (LPA) with up to several GeV beam in very short distance appears very promising. The Free Electron Laser (FEL), though very challenging, can be viewed as a qualifying application of these new emerging LPAs. The energy spread and divergence, larger than from conventional accelerators used for FEL, have to be manipulated to fulfil the FEL requirements. On the test experiment COXINEL (ERC340015), the beam is controlled in a manipulation [1,2] line, using permanent magnet quadrupoles of variable strength [3] for emittance handing and a decompression chicane equipped with a slit for the energy selection, enabling FEL amplification for baseline reference parameters [2]. The electron position and dispersion are independently adjusted [4]. The measured spontaneous emission radiated by a 2 m long 18 mm period cryo-ready undulator exhibits the typical undulator spatio-spectral pattern, in agreement with the modelling of the electron beam travelling along the line and of the afferent photon generation. The wavelength is easily tuned with undulator gap variation. A wavelength stability of 2.6% is achieved. The undulator linewidth can be controlled.
[1] A. Loulergue et al., New J. Phys. 17 023028 (2015)
[2] M. E. Couprie et al., PPCF 58, 3 (2016)
[3] F. Marteau et al., APL 111, 253503 (2017)
[4] T. André et al., Nature Comm. 1334 (2018)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP048  
About • paper received ※ 13 August 2019       paper accepted ※ 16 September 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)