Paper | Title | Page |
---|---|---|
TUP032 | Regenerative Amplification for a Hard X-Ray Free-Electron Laser | 118 |
|
||
Funding: This work was supported by the Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory, under contract DE-AC02-76SF00515. An X-ray regenerative amplifier FEL (XRAFEL) utilizes an X-ray crystal cavity to provide optical feedback to the entrance of a high-gain undulator. An XRAFEL system leverages gain-guiding in the undulator to reduce the cavity alignment tolerances and targets the production of longitudinally coherent and high peak power and brightness X-ray pulses that could significantly enhance the performance of a standard single-pass SASE amplifier. The successful implementation of an X-ray cavity in the XRAFEL scheme requires the demonstration of X-ray optical components that can either satisfy large output coupling constraints or passively output a large fraction of the amplified coherent radiation. Here, we present new schemes to either actively Q-switch a diamond Bragg crystal through lattice constant manipulation or passively output couple a large fraction of the stored cavity radiation through controlled FEL microbunch rotation. A beamline design study, cavity stability analysis, and optimization will be presented illustrating the performance of potential XRAFEL configurations at LCLS-II/-HE using high-fidelity simulations. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP032 | |
About • | paper received ※ 24 August 2019 paper accepted ※ 26 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUD04 | Cavity-Based Free-Electron Laser Research and Development: A Joint Argonne National Laboratory and SLAC National Laboratory Collaboration | 282 |
|
||
One solution for producing longitudinally coherent FEL pulses is to store and recirculate the output of an amplifier in an X-ray cavity so that the X-ray pulse can interact with following fresh electron bunches over many passes. The X-ray FEL oscillator (XFELO) and the X-ray regenerative amplifier FEL (XRAFEL) concepts use this technique and rely on the same fundamental ingredients to realize their full capability. Both schemes require a high repetition rate electron beam, an undulator to provide FEL gain, and an X-ray cavity to recirculate and monochromatize the radiation. The shared infrastructure, complementary performance characteristics, and potentially transformative FEL properties of the XFELO and XRAFEL have brought together a joint Argonne National Laboratory (ANL) and SLAC National Laboratory (SLAC) collaboration aimed at enabling these schemes at LCLS-II. We present plans to install a rectangular X-ray cavity in the LCLS-II undulator hall and perform experiments employing 2-bunch copper RF linac accelerated electron beams. This includes performing cavity ring-down measurements and 2-pass gain measurements for both the low-gain XFELO and the high-gain RAFEL schemes. | ||
![]() |
Slides TUD04 [12.425 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUD04 | |
About • | paper received ※ 25 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEP043 | Multi-Energy Operation Analysis in a Superconducting Linac Based on off-Frequency Detune Method | 416 |
|
||
The free-electron laser facilities driven by a superconducting radio-frequency (SRF) linac provide high-repetition-rate electron beam, which makes it feasible to feed multiple undulator lines at the same time. In this paper, we study a method of controlling the beam energy of multiple electron bunches by off-frequency detuning of the SRF linac. Based on the theoretical analysis, we present the optimal solutions of the method and the strategy to allocate linac energy for each possible off-frequency detune. The initial acceleration phases before detuning of the SRF linac can be optimized to reduce the necessary SRF linac energy overhead. We adopt the LCLS-II-HE configuration as an example to discuss possible schemes for two undulator lines. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP043 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |