Author: Penirschke, A.
Paper Title Page
WEP019 Concept of a Novel High-Bandwidth Arrival Time Monitor for Very Low Charges as a Part of the All-Optical Synchronization Systems at XFEL and FLASH 368
 
  • A. Penirschke
    THM, Friedberg, Germany
  • W. Ackermann
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M.K. Czwalinna, H. Schlarb
    DESY, Hamburg, Germany
 
  Funding: This work is supported by the German Federal Ministry of Education and Research (BMBF) under contract no. 05K19RO1.
Numerous advanced applications of X-ray free-electron lasers require pulse durations and time resolutions in the order of only a few femtoseconds or better. The generation of these pulses to be used in time-resolved experiments require synchronization techniques that can simultaneously lock all necessary components to a precision in the range of 1 fs only. To improve the experimental conditions at existing facilities and enable future development of seeded FELs, a new all-optical synchronization system at FLASH and XFEL was implemented, which is based on pulsed optical signals rather than electronic RF signals. In collaboration with DESY, Hamburg the all-optical synchronization system is used to ensure a timing stability on the 10 fs scale at XFEL. For a future ultra-low charge operation mode down to 1 pC at XFEL an overall synchronization of (5+1)fs r.m.s. or better is necessary. This contribution presents a new concept for a ultra-wideband pick-up structure for beampipe diameters down to 10 mm for frequencies up to 100 GHz or higher and at the same time providing sufficient output signal for the attached EOMs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP019  
About • paper received ※ 23 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)