Paper | Title | Page |
---|---|---|
TUP036 | A Waveguide-Based High Efficiency Super-Radiant FEL Operating in the THz Regime | 127 |
|
||
Funding: DOE grant No. DE-SC0009914 and NSF grant PHY-1734215 In this paper we describe a novel self-consistent 3D simulation approach for a waveguide FEL operating in the zero-slippage regime to generate high power THz radiation. In this interaction regime, the phase and group velocity of the radiation are matched to the relativistic beam traveling in the undulator achieving long interaction lengths. Our numerical approach is based on expanding the existing 3D particle tracking code GPT (General Particle Tracer) to follow the interaction of the particles in the beam with the electromagnetic field modes of the waveguide. We present two separate studies: one for a case which was benchmarked with experimental results and another one for a test case where, using a longer undulator and larger bunch charge, a sizable fraction of the input beam energy can be extracted and converted to THz radiation. The model presented here is an important step in the development of the zero-slippage FEL scheme as a source for high average and peak power THz radiation. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP036 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUT01 | Superradiance and Stimulated-Superradiant Emission of Bunched Electron Beams | 288 |
|
||
Funding: We acknowledge support of the Israel Science Foundation and the German Israeli Projects Foundation (DIP). We outline the fundamental processes of coherent radiation emission from a bunched charged particles beam [1]. In contrast to spontaneous emission of radiation from a random electron beam that is proportional to the number of particles N, a pre-bunched electron beam emits spontaneously coherent radiation proportional to N2 through the process of (spontaneous) superradiance (SP-SR) (in the sense of Dicke’s [2]). The SP-SR emission of a bunched electron beam can be even further enhanced by a process of stimulated-superradiance (ST-SR) in the presence of a seed injected radiation field. These coherent radiation emission processes are presented in term of a radiation mode expansion model, applied to general free electron radiation schemes: Optical-Klystron, HGHG, EEHG, and coherent THz sources based on synchrotron radiation, undulator radiation or Smith-Purcell radiation. The general model of coherent spontaneous emission is also extended to the nonlinear regime - Tapering Enhanced Stimulated Superradiance (TESSA) [3], and related to the tapered wiggler section of seed-injected FELs. In X-Ray FELs these processes are convoluted with other effects, but they are guidelines for strategies of wiggler tapering efficiency enhancement. [1] A. Gover et al., Rev. Mod. Phys. https://arxiv.org/abs/1810.07566v3 (2019) [2] R. H. Dicke, Physical Review 93, 99 (1954) [3] N. Sudar et al., P.R.L. 117, 174801 (2016) |
||
![]() |
Slides TUT01 [11.391 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUT01 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THP073 | Status Update for the High Gain High Efficiency TESSA-266 Experiment | 730 |
|
||
Funding: DOE grant No. DE-SC0009914 and DE-SC0018559 Tapering Enhanced Stimulated Superradiant Amplification (TESSA) allows to increase the efficiency of Free Electron Laser (FEL) based radiation generation from ~0.1% to 10% by using intense seed laser pulses, strongly tapered undulators and prebunched electron beams [1]. Initial results validating this method have already been obtained at 10 µm wavelength at Brookhaven National Laboratory [2]. We will present the design of an experiment to demonstrate the TESSA scheme at high gain and shorter wavelength (266 nm) using the APS injector linac at Argonne National Labor-atory (ANL) to obtain conversion efficiency of up to 10%. Undulator and focusing lattice design, as well as beam dynamics and diagnostics for this experiment will be discussed. An extension of the experiment to include the possibility of multi-bunch linac operation and an optical cavity around the undulator to operate in the TESSO regime will also be presented [3]. [1] J. Duris et al., New J. Phys. 17 063036 (2015) [2] N Sudar et al., Physical review letters, 117, 174801 (2016) [3] J. Duris et al., Physical Review Accelerators and Beams 21, 080705 (2018) |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP073 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |