Paper | Title | Page |
---|---|---|
TUP027 | Modelling Crystal Misaligments for the X-ray FEL Oscillator | 110 |
|
||
Funding: Work supported by U.S. Dept. of Energy Office of Sciences under Contract No. DE-AC02-06CH11357. The X-ray FEL oscillator has the potential to be a revolutionary new light source providing unprecedented stability in a narrow bandwidth [1]. However, a detailed understanding of cavity tolerance and stability has only begun, and there are presently no suitable simulation tools. To address this issue, we have developed a fast FEL oscillator code that discretizes the field using a Gauss-Hermite mode expansion of the oscillator cavity. Errors in crystal alignment result in a mixing of the modes that is easily modeled with a loss and coupling matrix. We show first results from our code, including the effects of static and time-varying crystal misalignments. [1] K.-J. Kim, Y. Shvyd’ko, and S. Reiche, PRL 100 244802 (2008) |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP027 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 25 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP028 | Power Variations of an X-ray FEL Oscillator in Saturation | 114 |
|
||
Funding: Work supported by U.S. Dept. of Energy Office of Sciences under Contract No. DE-AC02-06CH11357. Basic FEL theory predicts that the fractional power fluctuations of an ideal oscillator in steady state should be given by the ratio of the spontaneous power in the oscillator bandwidth to that stored in the cavity at saturation. For the X-ray FEL oscillator with its narrow bandwidth Bragg crystal mirrors, this ratio is typically a few parts per million, but some simulations have shown evidence of power oscillations on the percent level. We show that this is not related to the well-known sideband instability, but rather is purely numerical and can be eliminated by changing the particle loading. We then briefly discuss to what extent variations in electron beam arrival time may degrade the power stability. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP028 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 25 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP037 | Optimization of the Transverse Gradient Undulator (TGU) for Application in a Storage Ring Based XFELO | 131 |
|
||
Funding: U.S. Dept. of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 The stringent energy spread requirement of the XFELO poses a challenge for its application in storage rings. One way to overcome this is by using a transverse gradient undulator (TGU) [1]. The TGU gain formula was discussed previously [2]. In this paper, we begin by reviewing the analytical 3D gain formula derived from the gain convolution formula. Following that, we apply numerical optimization to investigate the optimal beam and field parameters for maximal TGU gain. We found that a small emittance ratio (i.e. "flat beam" configuration) has a strong positive impact on TGU gain, as well as other patterns in the optimal parameters. [1] T. I. Smith et al., J. Appl. Phys. 50 (1979) 4580 [2] R. R. Lindberg et al., in Proceedings FEL’13, New York, USA, 2013, pp. 740-748, paper THOBNO02 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP037 | |
About • | paper received ※ 19 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP038 | Axial Symmetry in Spontaneous Undulator Radiation for XFELO Two-Bunch Experiment | 134 |
|
||
Funding: U.S. DOE, Office of Science, Office of BES, under Contract No. DE-AC02-06CH11357 and National Science Foundation under Award No. PHY-1549132, the Center for Bright Beams. A well known discrepancy exists between 2D and 3D FEL simulation codes with respect to the radiation field intensity prior to the exponential gain regime [1]. This can be qualitatively explained by the fact that the 3D field representation preserves many more modes than does the axisymmetric field solved for by a 2D code. In this paper, we seek to develop an analytical model that quantifies this difference. We begin by expanding the spontaneous undulator radiation field as a multipole series, whose lowest order mode is axisymmetric. This allows us to calculate the difference in predicted intensity. Next, we confirm these results with numerical calculation and existing FEL codes GINGER and GENESIS. Finally, we discuss the implications of this study with respect to the XFELO two-bunch experiment to be conducted at LCLS-II. [1] Z. Huang and K.-J. Kim, "Review of X-ray free-electron laser theory", Phys. Rev. ST-AB, vol. 10, p. 034801, 2007. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP038 | |
About • | paper received ※ 19 August 2019 paper accepted ※ 28 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP053 | An Investigation of Possible Non-Standard Photon Statistics in a Free-Electron Laser I: Experiment | 161 |
|
||
Funding: Work supported by U.S. DOE, Office of Science, Office of BES, under Award No. DE-SC0018428. It was reported that the photon statistics of the seventh coherent spontaneous harmonic radiation of the MARK III FEL was sub-Poissonian [1], which concludes that Fano factor F (the ratio of photon number variance to the average photon number) is less than unity. Whether FEL light exhibits such non-standard behavior is an important issue; if it does, our understanding of the FEL needs to be radically modified. In this paper, we re-examine the analyses of experimental data in Ref. [1]. We find that the observed value of F could be explained within the standard FEL theory if one combines the detector dead time effect with photon clustering arising from the FEL gain. We propose an improved experiment for a more definitive measurement of the FEL photon statistics. [1] T. Chen and J.M. Madey, J. Phys. Rev. Lett. 86, 5906 (2001). |
||
![]() |
Poster TUP053 [0.929 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP053 | |
About • | paper received ※ 21 August 2019 paper accepted ※ 12 September 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP054 | An Investigation of Possible Non-Standard Photon Statistics in a Free-Electron Laser II: Theory | 165 |
|
||
Funding: Work supported by U.S. DOE, Office of Science, Office of BES, under Award No. DE-SC0018428. In this paper we explore whether we can at present find a theoretical basis for non-standard, sub-Poissonian photon statistics in the coherent spontaneous harmonic radiation of an FEL as was claimed to have been measured with the Mark III FEL [1]. We develop a one dimensional quantum FEL oscillator model of the harmonic radiation in the linear gain regime to calculate the photon statistics. According to our study, it seems unlikely that the photon statistics for an FEL oscillator starting from the noise could be sub-Poissonian. [1] T. Chen and J.M. Madey, J. Phys. Rev. Lett. 86, 5906 (2001). |
||
![]() |
Poster TUP054 [0.386 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP054 | |
About • | paper received ※ 21 August 2019 paper accepted ※ 16 September 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUD04 | Cavity-Based Free-Electron Laser Research and Development: A Joint Argonne National Laboratory and SLAC National Laboratory Collaboration | 282 |
|
||
One solution for producing longitudinally coherent FEL pulses is to store and recirculate the output of an amplifier in an X-ray cavity so that the X-ray pulse can interact with following fresh electron bunches over many passes. The X-ray FEL oscillator (XFELO) and the X-ray regenerative amplifier FEL (XRAFEL) concepts use this technique and rely on the same fundamental ingredients to realize their full capability. Both schemes require a high repetition rate electron beam, an undulator to provide FEL gain, and an X-ray cavity to recirculate and monochromatize the radiation. The shared infrastructure, complementary performance characteristics, and potentially transformative FEL properties of the XFELO and XRAFEL have brought together a joint Argonne National Laboratory (ANL) and SLAC National Laboratory (SLAC) collaboration aimed at enabling these schemes at LCLS-II. We present plans to install a rectangular X-ray cavity in the LCLS-II undulator hall and perform experiments employing 2-bunch copper RF linac accelerated electron beams. This includes performing cavity ring-down measurements and 2-pass gain measurements for both the low-gain XFELO and the high-gain RAFEL schemes. | ||
![]() |
Slides TUD04 [12.425 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUD04 | |
About • | paper received ※ 25 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |