Author: Li, P.
Paper Title Page
MOA03 First Lasing at the CAEP THz FEL Facility 11
 
  • P. Li, T.H. He, M. Li, J. Liu, X. Luo, Q. Pan, L.J. Shan, X. Shen, H. Wang, J. Wang, D. Wu, D.X. Xiao, Y. Xu, L.G. Yan, P. Zhang, K. Zhou
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
  • Y. Liu
    CAEP/IFP, Mainyang, Sichuan, People’s Republic of China
 
  China Academy of Engineering Physics terahertz free electron laser (CAEP THz FEL, CTFEL) is the first THz FEL user facility in China, which was an oscillator type FEL. This THz FEL facility consists of a GaAs photocathode high-voltage DC gun, a superconducting RF linac, a planar undulator and a quasi-concentric optical resonator. The terahertz laser’s frequency is continuous adjustable from 0.7 THz to 4.2 THz. The average power is more than 10 W and the micro-pulse power is more than 0.3 MW. In this paper, the specific parameters and operation status of CTFEL are presented. Finally, some user experiments are introduced briefly.  
slides icon Slides MOA03 [3.771 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-MOA03  
About • paper received ※ 20 August 2019       paper accepted ※ 18 September 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP015 Design of High-Repetition Terahertz Super-Radiation Based on CAEP THz FEL Superconducting Beamline 73
 
  • D. Wu, T.H. He, L.B. Li, M. Li, P. Li, X. Luo, Q. Pan, L.J. Shan, X. Shen, H. Wang, J. Wang, D.X. Xiao, L.G. Yan, P. Zhang, K. Zhou
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
 
  China Academy of Engineering Physics terahertz free electron laser (CAEP THz FEL, CTFEL) is the first THz FEL oscillator in China. CTFEL spectrum covers from 0.7 THz to 4.2 THz. However, there are still many applications requiring lower frequency. The super-radiation of the ultra-short electron beam bunches could generate ultra-fast, carrier-envelope-phase-stable, and high-field terahertz. The coherent diffraction/transition radiation (CDR/CTR) and coherent undulator radiation (CUR) can be also synchronized naturally. In this paper, the dynamic and the design of the super-radiation are introduced. The main parameters of the CDR/CTR and CUR are also discussed. A multi-color pump-probe system based on super-radiation is also proposed.
Work supported by National Natural Science Foundation of China with grant (11575264, 11605190 and 11805192), Innovation Foundation of CAEP with grant (CX2019036, CX2019037)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP015  
About • paper received ※ 20 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP024 1.3 GHz Solid State Power Amplifier for the Buncher in CTFEL Facility 371
 
  • T.H. He, C.L. Lao, P. Li, X. Luo, L.J. Shan, K. Zhou
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
 
  The THz Free Electron Laser facility (CAEP THz FEL, CTFEL) of the China Academy of Engineering Physics uses high quality electron beams to generate high average power terahertz radiations. A 1.3 GHz RF buncher is used in front of the superconducting linear accelerator of the CTFEL facility to improve the electron beams quality. The RF buncher is driven by a solid state power amplifier (SSPA), and the SSPA is feedback controlled by a low level RF (LLRF) control system to ensure the high stability of the amplitude and phase of the bunching field in the buncher cavity. The SSPA operates at 1.3 GHz and outputs 0 to 5 kW of continuous wave power. This paper mainly introduces the principle and composition of the SSPA, and presents some experiments on the RF buncher driven by the SSPA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP024  
About • paper received ※ 15 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP026 Preliminary Geometry Optimization of a 3.5-Cell SRF Gun Cavity at ELBE Based on Beam Dynamics 374
 
  • K. Zhou, P. Li
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
  • A. Arnold, S. Ma, J. Schaber, J. Teichert, R. Xiang
    HZDR, Dresden, Germany
 
  At present, ELBE radiation source at HZDR is optimizing the SRF cavity for the next generation ELBE SRF GUN. This paper presents a preliminary study on the geometry optimization of a 3.5-cell SRF gun cavity based on beam dynamics. By changing the lengths of the half cell and the first TESLA like cell, two new cavity models with higher electric field in the half cell are built and their RF fields are compared with SRF GUN I and SRF GUN II. Through the scanning of the RF phases and the electric fields, the simulation results indicate that new models have smaller transverse emittance at relatively lower electric field gradients and better performance on longitudinal emittance than SRF GUN I and SRF GUN II.  
poster icon Poster WEP026 [1.345 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP026  
About • paper received ※ 19 August 2019       paper accepted ※ 29 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP027 A Fast and Accurate Method to Shim Undulator Using Multi-Objective GA 378
 
  • L.G. Yan, L.J. Chen, D.R. Deng, P. Li
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
 
  Funding: National Natural Science Foundation of China under grant of 11505174, 11505173 and 11605190
GA (Genetic Algorithm) is one of the most excellent methods to search the optimal solution for a problem, which has been applied to solve various problems. It is hard to estimate shim applied on raw undulator precisely. There are many methods have been developed to solve the problem. In this proceeding, we proposed a fast and accurate method to conclude the shim using multi-objective GA. A multi-objective objective function was set, and multi-objective optimization was also implemented. The evolution time is reduced by setting optimal evolution parameters. To demonstrate the method, we also finished some test on a prototype undulator U38. As a result, it can be achieved only by shimming three times that all the parameters of trajectory center deviation, peak-to-peak error and phase error satisfied the requirements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP027  
About • paper received ※ 20 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)