Author: He, Z.G.
Paper Title Page
THP015 The X-Band Linear Compression System in Dalian Coherent Light Source 625
 
  • Y. Yu, Z. Chen, G.K. Cheng, D.X. Dai, H.L. Ding, Z.G. He, L. Huang, Q.M. Li, Z.B. Li, L. Shi, J.T. Sun, K. Tao, Y.H. Tian, G.L. Wang, Z.Q. Wang, G.R. Wu, J.Y. Yang, X.M. Yang, W.Q. Zhang
    DICP, Dalian, People’s Republic of China
 
  Dalian Coherent Light Source (DCLS) is a free-electron laser (FEL) user facility working in the extreme ultraviolet (EUV) wavelength region from 50 to 150 nm. It mainly operates on the High Gain Harmonic Generation (HGHG) mode with the seed laser, although it can also run in the Self Amplified Spontaneous Emission (SASE) mode. The brightness and bandwidth of FEL radiation strongly depends on electron bunch quality, such as normalized transverse emittance, electron bunch energy, energy spread, peak current, etc. The high peak current with uniform longitudinal distribution is especially helpful for high peak power and narrow bandwidth of FEL, although it is not easy to achieve, due to the nonlinearity of sinusoidal accelerating radio frequency (RF) field and the 2nd-order momentum compaction coefficient T566 of bunch compressor. An X-band linearizer will be installed before the bunch compressor in order to correct this nonlinearity properly. In this paper, the beam dynamics design of the X-band linear compression system in DCLS is focused, and the simulation results with Elegant are presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP015  
About • paper received ※ 19 August 2019       paper accepted ※ 25 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)